MECHANICAL CHARACTERIZATION OF E-GLASS FIBER REINFORCED POLYESTER/ MWCNTS NANOCOMPOSITES

Authors

  • Naguib G. Yakoub Faculty of Engineering Beni-Suef University

DOI:

https://doi.org/10.31436/iiumej.v23i1.1848

Keywords:

MWCNTs, Nanoparticles, Mechanical properties, Polymer nanocomposites, E-glass fiber.

Abstract

Mechanical properties of polyester/glass fiber reinforced by multiwalled carbon nanotubes (MWCNTs) were studied. MWCNTs nano particles are mixed within resin in various weight fractions of 0.1, 0.2, 0.4 and 0.6 % using sonication. E-Glass fiber (chopped strand mat) is used in various weight fractions within the composite like 80/20 wt%, 70/30 wt%, 50/50 wt% to fabricate polyester/CSM/MWCNTs composites. The effect of the addition of MWCNTs nanoparticles on the mechanical characteristics such as hardness and tensile strength were investigated. The effect of various E-glass fiber chopped strand mat (CSM) wt.% reinforcement is also investigated. A scanning electron microscope (SEM) was used to show the nanocomposites morphological properties such as reinforcement orientation and the bonding between matrix and fiber. It was found that the addition of 0.4 wt% MWCNTs improves the mechanical properties of composites, especially the 50 wt% polyester / 50 wt% CSM composite. The tensile strength improved by 39.8%, and the hardness improved by 38%.

ABSTRAK: Ciri-ciri mekanikal bagi poliester / gelas fiber diperkukuh dengan dinding berbilang karbon nanotiub (MWCNTs) dikaji. Partikel nano MWCNT telah dicampur ke dalam resin pelbagai berat pada pecahan 0.1, 0.2, 0.4 dan 0.6 % menggunakan sonikasi. Gentian Kaca-E (potongan lembaran) telah digunakan dalam pelbagai pecahan berat dalam komposit 80/20 wt%, 70/30 wt%, 50/50 wt% bagi menghasilkan komposit poliester/CSM/MWCNT. Kesan penambahan nanopartikel MWCNT pada ciri-ciri mekanikal seperti kekerasan dan kekuatan tensil diuji. Kesan pelbagai gentian Kaca-E (potongan lembaran) (CSM) wt.% bersama agen pengukuh turut dikaji. Pengimbas Mikroskop Elektron (SEM) digunakan bagi menilai ciri-ciri morfologi komposit nano seperti orientasi pengukuh dan ikatan antara matrik dan gentian. Dapatan kajian menunjukkan dengan penambahan sebanyak 0.4 wt% MWCNT dapat memperbaiki ciri-ciri mekanikal komposit terutama komposit campuran (50 wt% polyester / 50 wt% CSM). Ketahanan tensil meningkat sebanyak 39.8%, dan kekerasan telah bertambah sebanyak 38%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Palanikumar K. (2010) Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Mater Manuf Process., 25:1059–1067. DOI: https://doi.org/10.1080/10426910903575830

Murugan S, Rajendran R, Fei W. (2016) Graphene-zinc oxide (G-MWCNTs) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Dev., 1:454-460. DOI: https://doi.org/10.1016/j.jsamd.2016.10.001

Sandhya CP, John B, Gouri C. (2017) Sn/Al2O3/C/CNT composite prepared by wet milling as anode material for lithium-ion cells, J. Sci. Adv. Mater. Dev., 2:210-214. DOI: https://doi.org/10.1016/j.jsamd.2017.04.003

Peigney A, Laurent C, Flahaut E, Rousset A. (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramics International., 26(6):677-683. DOI: https://doi.org/10.1016/S0272-8842(00)00004-3

Flahaut E, Peigney A, Laurent C, Marliere C, Chastel F, Rousset A. (2000) Carbon nanotubemetal- oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia., 48(14):3803-3812. DOI: https://doi.org/10.1016/S1359-6454(00)00147-6

Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A. (2002) Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chemical Physics Letters., 352(1-2):20-25. DOI: https://doi.org/10.1016/S0009-2614(01)01441-5

Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH. (1999) Fabrication of aluminum-carbon nanotube composites and their electrical properties. Carbon., 37(5):855-858. DOI: https://doi.org/10.1016/S0008-6223(98)00285-1

Cochet M, Maser WK, Benito AM, Callejas MA, Martínez ME, Benoit JM, Schreiberb J, Chauvet O. (2001) Synthesis of a new polyaniline/nanotube composite: ‘‘in-situ’’ polymerization and charge transfer through site selective interaction. Chem Comm., 16:1450-1451. DOI: https://doi.org/10.1039/b104009j

Jin Z, Sun X, Xu G, Goh SH, Ji W. (2000) Nonlinear optical properties of some polymer/multiwalled carbon nanotube-based composites. Chem Phys Lett., 318:505-510. DOI: https://doi.org/10.1016/S0009-2614(00)00091-9

Jin Z, Pramoda KP, Xu G, Goh SH. (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacry-late) composites. Chem Phys Lett., 337(1-3):43-47. DOI: https://doi.org/10.1016/S0009-2614(01)00186-5

Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA. (2002) Fibers from polypropylene/ nano carbon fiber composites. Polymer, 43(5):1701-1733. DOI: https://doi.org/10.1016/S0032-3861(01)00744-3

Lourie O, Wagner HD. (1999) Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites. Composite Science and Technology., 59(6):975-977. DOI: https://doi.org/10.1016/S0266-3538(98)00148-1

Breton Y, Esarmot GD, Salvetat JP, Delpeux S, Sinturel C, Béguin F, Bonnamy S. (2004) Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon., 42(5-6):1027-1030. DOI: https://doi.org/10.1016/j.carbon.2003.12.026

Liu T, Phang I, Shen L, Chow S, Zhang W. (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 37(19):7214-7222. DOI: https://doi.org/10.1021/ma049132t

Allaoui A, Bai S, Cheng HM, Bai JB. (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology, 62:1993-1998. DOI: https://doi.org/10.1016/S0266-3538(02)00129-X

Zhou Y, Pervin F, Lewis L, Jeelani S. (2006) Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube- reinforced epoxy. Materials Science and Engineering., 452-453:657-664. DOI: https://doi.org/10.1016/j.msea.2006.11.066

Schadler LS, Giannaris SC, Ajayan PM. (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett., 73(26):3842-3844. DOI: https://doi.org/10.1063/1.122911

Shekar KC, Prasad BA, Prasad NE. (2014) Effect of amino multiwalled carbon nanotubes reinforcement on the flexural properties of neat epoxy. Appl Mech Mater., 592:912-916. DOI: https://doi.org/10.4028/www.scientific.net/AMM.592-594.912

Gojny FH, Wichmann MHG., Fiedler B, Schulte K. (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study. Compos Sci Technol., 65:2300-2313. DOI: https://doi.org/10.1016/j.compscitech.2005.04.021

Shokrieh MM, Saeedi A, Chitsazzadeh M. (2014) Evaluating the effects of multi-walled carbon nanotubes on the mechanical properties of chopped strand mat/polyester composites, Materials & Design, 56:274-279. DOI: https://doi.org/10.1016/j.matdes.2013.11.017

El-Tayeb NSM, Yousif BF, Yap TC. (2006) Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface. Wear., 261:443-452. DOI: https://doi.org/10.1016/j.wear.2005.12.014

Downloads

Published

2022-01-04

How to Cite

Naguib, G. (2022). MECHANICAL CHARACTERIZATION OF E-GLASS FIBER REINFORCED POLYESTER/ MWCNTS NANOCOMPOSITES. IIUM Engineering Journal, 23(1), 329–338. https://doi.org/10.31436/iiumej.v23i1.1848

Issue

Section

Materials and Manufacturing Engineering