EFFECT OF FERRO ELECTRIC THICKNESS ON NEGATIVE CAPACITANCE FET (NCFET)

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1814

Keywords:

NCFETs, Ferroelectric, Subthreshold

Abstract

Conventional Field Effect Transistor (FET) are well known to require at least 60mV/decade at 300K change in the channel potential to change the current by a factor of 10. Due to this, 60mV/decade becomes the bottleneck of this day transistor. A comprehensive study of the Negative Capacitance Field Effect Transistor (NCFETis presented.  This paper shows the effect of ferroelectric material in MOSFET structure by replacing the insulator in the conventional MOSFET. It should be possible to obtain a steeper subthreshold swing (SS) compared to the one without a ferroelectric material layer, thus breaking the fundamental limit on the operating voltage of MOSFET.  27% of the subthreshold slope reduction is observed by introducing ferroelectric in the dielectric layer compared to the conventional MOSFETs. Hence, the power dissipation in MOSFET can be mitigated and shine to a new technology of a low voltage/low power transistor operation.

ABSTRAK: Transistor Kesan Medan Konvensional (FET) terkenal memerlukan sekurang-kurangnya 60mV / dekad pada 300K perubahan pada saluran yang berpotensi untuk mengubah arus dengan faktor 10. Oleh kerana itu, 60mV / dekad menjadi hambatan transistor hari ini. Kajian komprehensif mengenai Negative Capacitance Field Effect Transistor (NCFETis dikemukakan. Makalah ini menunjukkan kesan bahan ferroelektrik dalam struktur MOSFET dengan mengganti penebat dalam MOSFET konvensional. Sebaiknya dapatkan swing swing subthreshold (SS) yang lebih curam berbanding dengan satu tanpa lapisan bahan ferroelektrik, sehingga melanggar had asas pada voltan operasi MOSFET. 27% pengurangan cerun subthreshold diperhatikan dengan memperkenalkan ferroelektrik di lapisan dielektrik berbanding dengan MOSFET konvensional. Oleh itu, pelesapan daya dalam MOSFET dapat dikurangkan dan bersinar dengan teknologi baru operasi transistor voltan rendah / kuasa rendah.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

G. M. Moore (1965) Moore's Law, Electronics. Electronics 38(8): 114. [Online].Available:https://newsroom.intel.com/wpcontent/uploads/sites/11/2018/05/moores-law-electronics.pdf.

S. Chopra and S. Subramaniam (2015) A Review on Challenges for MOSFET Scaling. Int. J. Innov. Sci. Eng. Technol. 2(4): 1055–1057. [Online]. Available: http://ijiset.com/vol2/v2s4/IJISET_V2_I4_169.pdf

C. W. Yeung (2014) Steep On / Off Transistors for Future Low Power Electronics. Online http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-226.pdf

U. E. Avci, R. Rios, K. J. Kuhn, and I. A. Young (2011) Comparison of power and performance for the TFET and MOSFET and considerations for P-TFET. Proc. IEEE Conf. Nanotechnol. pp. 869–872. https://doi.org/10.1109/NANO.2011.6144631

K. E. Moselund, D. Bouvet, V. Pott, C. Meinen, M. Kayal, and A. M. Ionescu (2008) Punch- through impact ionization MOSFET (PIMOS): From device principle to applications. Solid. State. Electron. 52(2): 1336–1344. https://doi.org/10.1016/j.sse.2008.04.021

M. Kobayashi , Kyokai Joho Imeji Zasshi (2016) More than moore. Journal Inst. Image Inf. Telev. Eng. 70(3): 324–327. https://doi.org/10.3169/itej.70.324

S. Salahuddin and S. Datta (2008) Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?" Tech. Dig. Int. Electron Devices Meeting. pp. 693–696. https://doi.org/10.1109/IEDM.2008.4796789

S. Salahuddin and S. Datta (2008) Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices. Nano Lett., 8 (2): 405–410. https://doi.org/10.1021/nl071804g

X. Li, J. Sampson, A. Khan, K. Ma, S. George, A. Aziz et al. (2018) Enabling Energy-Efficient Nonvolatile Computing With Negative Capacitance FET. IEEE Transactions on Electron Devices. 64(8): 3452-3458. https://doi.org/10.1109/TED.2017.2716338

S. C. Chang, U. E. Avci, D. E. Nikonov and I. A. Young (2017) A Thermodynamic Perspective of Negative-Capacitance Field-Effect Transistors. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits. 3(1): 56-64. https://doi.org/10.1109/JXCDC.2017.2750108

Ko E, Shin J, Shin C (2018) Steep switching devices for low power applications: negative differential capacitance/resistance field effect transistors. Nano Convergence.5(1):2. https://doi.org/10.1186/s40580-018-0135-4

A. Sharma and K. Roy (2017) Design Space Exploration of Hysteresis-Free HfZrOx-Based Negative Capacitance FETs. IEEE Electron Device Letters.38(8):1165-1167. https://doi.org/10.1109/LED.2017.2714659

A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin (2015) Negative capacitance in a ferroelectric capacitor. Nature Materials. 14(2): 182-186. https://doi.org/10.1038/nmat4148

Saptarshi Das (2016) Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade Steep Slope Device with High ON current. Scientific Reports. 6: 34811. https://doi.org/10.1038/srep34811

S. H. Le, B. R. Salmassi, J. N. Burghartz,, P. M. Sarr (2004) Characterization of ferroelectric thin films materials for FeRAM. Proc SAFE & Prorisc Veldhoven, pp. 710-713.

Fei Liu, Yan Zhou, Yijiao Wang, Xiaoyan Liu, Jian Wang and Hong Guo (2016) Negative capacitance transistors with monolayer black phosphorus. npj Quantum Materials. 2016: 16004: 1-6. http://dx.doi.org/10.1038/npjquantmats.2016.4

L. Tu, X. Wang, J. Wang, X. Meng, and J. Chu (2018) Ferroelectric Negative Capacitance Field Effect Transistor," Adv. Electron. Mater. 4(11):1–17. https://doi.org/10.1002/aelm.201800231

S. L. Miller and P. J. McWhorter (1992) Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys.72(12):5999–6010. https://doi.org/10.1063/1.351910

Faculty of NPTEL, "Module 2?: MOSFET Lecture 8?: Short Channel Effects," p. 6, [Online]. Available: http://nptel.ac.in/courses/117101058/downloads/Lec-8.pdf.

Downloads

Published

2020-01-30

How to Cite

Hashim, M. B. M. ., Alam, A. Z., & Darmis, N. B. . (2020). EFFECT OF FERRO ELECTRIC THICKNESS ON NEGATIVE CAPACITANCE FET (NCFET). IIUM Engineering Journal, 22(1), 339–346. https://doi.org/10.31436/iiumej.v22i1.1814

Issue

Section

Electrical, Computer and Communications Engineering