VEHICLE AIR CONDITIONER (VAC) CONTROL SYSTEM BASED ON PASSENGER COMFORT: A PROOF OF CONCEPT

Authors

  • Suroto Munahar Department of Automotive Engineering
  • Bagiyo Condro Purnomo Department of Automotive Engineering
  • Muhammad Izzudin Department of Automotive Engineering
  • Muji Setiyo Universitas Muhammadiyah Magelang https://orcid.org/0000-0002-6582-5340
  • Madihah Mohd Saudi Faculty of Science and Technology, Universiti Sains Islam Malaysia https://orcid.org/0000-0001-9120-1702

DOI:

https://doi.org/10.31436/iiumej.v23i1.1812

Keywords:

Air conditioner, Control system, Humidity, Temperature

Abstract

The air conditioning system (AC) in passenger cars requires precise control to provide a comfortable and healthy driving. In an AC system with limited manual control, the driver has to repeatedly change the setting to improve comfort. This problem may be overcome by implementing an automatic control system to maintain cabin temperature and humidity to meet passenger's thermal comfort. Therefore, this paper presents the development of a laboratory-scale prototype air conditioning control system to regulate temperature, humidity and air circulation in the cabin. The experimental results show that the control system is able to control air temperature in the range of 21 °C to 23 °C and cabin air humidity between 40% to 60% in various simulated environmental conditions which indicate acceptance for comfort and health standards in the vehicle. In conclusion, this method can be applied to older vehicles with reasonable modifications.

ABSTRAK: Sistem penyejuk udara (AC) pada kenderaan penumpang memerlukan ketepatan kawalan bagi menyediakan keselesaan dan kesejahteraan pemanduan. Melalui sistem AC dengan kawalan manual terhad, pemandu perlu berulang kali mengubah penyesuaian latar bagi meningkatkan keselesaan. Masalah ini dapat diatasi dengan menerapkan sistem kawalan automatik bagi menjaga suhu dan kelembapan kabin agar memenuhi keselesaan suhu penumpang. Oleh itu, kajian ini merupakan pembangunan prototaip sistem kawalan AC skala laboratari bagi mengawal suhu, kelembapan dan peredaran udara dalam kabin. Hasil eksperimen menunjukkan sistem kawalan ini mampu mengendali suhu udara pada kitaran 21 °C  hingga 23 °C dan kelembaban udara kabin antara 40% hingga 60% pada pelbagai keadaan persekitaran simulasi yang menunjukkan penerimaan standard keselesaan dan kesejahteraan kenderaan. Sebagai kesimpulan, cara ini dapat diaplikasi pada kenderaan lama dengan modifikasi bersesuaian.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Kristanto D, Leephakpreeda T. (2017) Sensitivity analysis of energy conversion for effective energy consumption, thermal comfort, and air quality within car cabin. Energy Procedia, 138: 552-557. https://doi.org/10.1016/j.egypro.2017.10.158 DOI: https://doi.org/10.1016/j.egypro.2017.10.158

Danca P, Nastase I, Bode F, Croitoru C, Dogeanu A, Meslem A. (2019) Evaluation of the thermal comfort for its occupants inside a vehicle during summer. IOP Conference Series: Materials Science and Engineering, 595(1). https://doi.org/10.1088/1757-899X/595/1/012027 DOI: https://doi.org/10.1088/1757-899X/595/1/012027

Setiyo M, Widodo N, Purnomo BC, Munahar S, Rahmawan MA. (2019) Harvesting cooling effect on LPG-fueled vehicles for mini cooler?: A lab-scale investigation. Indonesian Journal of Science & Technology, 4(1): 39-47. https://doi.org/10.17509/ijost.v4i1.12834 DOI: https://doi.org/10.17509/ijost.v4i1.12834

Ravindra K, Agarwal N, Mor S. (2020) Assessment of thermal comfort parameters in various car models and mitigation strategies for extreme heat-health risks in the tropical climate. Journal of Environmental Management, 267: 110655. https://doi.org/10.1016/j.jenvman.2020.110655 DOI: https://doi.org/10.1016/j.jenvman.2020.110655

Zhou X, Lai D, Chen, Q. (2019) Experimental investigation of thermal comfort in a passenger car under driving conditions. Building and Environment, 149: 109-119. https://doi.org/10.1016/j.buildenv.2018.12.022 DOI: https://doi.org/10.1016/j.buildenv.2018.12.022

Shahzad S, Brennan J, Theodossopoulos D, Hughes B, Calautit JK. (2016) The accuracy of thermal comfort zone, ASHRAE Standard 55-2013. CIBSE Technical Symposium. http://hdl.handle.net/10545/620577

Zhai Y, Zhang Y, Zhang H, Pasut W, Arens E. (2015) Human comfort and perceived air quality in warm and humid environments with ceiling fans. Building and Environment, 90: 178-185. https://doi.org/10.1016/j.buildenv.2015.04.003 DOI: https://doi.org/10.1016/j.buildenv.2015.04.003

Toftum J, Anette SJ, Fanger PO. (1998) Upper limits for indoor air humidity to avoid uncomfortably humid skin. Energy and Buildings, 28: 1-13. https://doi.org/10.1016/S0378-7788(97)00017-0 DOI: https://doi.org/10.1016/S0378-7788(97)00017-0

Javadinejad S, Dara R, Jafary F. (2020) Potential impact of climate change on temperature and humidity related human health effects during extreme condition. Safety in Extreme Environments, 2: 189-195. https://doi.org/10.1007/s42797-020-00021-x DOI: https://doi.org/10.1007/s42797-020-00021-x

G?adyszewska-Fiedoruk K, Teleszewski TJ. (2020) Modeling of humidity in passenger cars equipped with mechanical ventilation. Energies, 13(11). https://doi.org/10.3390/en13112987 DOI: https://doi.org/10.3390/en13112987

Watson P, Whale A, Mears SA, Reyner LA, Maughan RJ. (2015) Mild hypohydration increases the frequency of driver errors during a prolonged, monotonous driving task. Physiology and Behavior, 147: 313-318. https://doi.org/10.1016/j.physbeh.2015.04.028 DOI: https://doi.org/10.1016/j.physbeh.2015.04.028

Afzal A, Saleel CA, Badruddin IA, Khan TMY, Kamangar S, Mallick Z, Samuel OD, Soudagar MEM. (2020) Human thermal comfort in passenger vehicles using an organic phase change material– an experimental investigation, neural network modelling, and optimization. Building and Environment, 180: 107012. https://doi.org/10.1016/j.buildenv.2020.107012 DOI: https://doi.org/10.1016/j.buildenv.2020.107012

Li CL, Zhang X, Chung SL. (2012) Temperature and humidity control inside an automobile during heating period. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, 35(6): 641-654. https://doi.org/10.1080/02533839.2012.701853 DOI: https://doi.org/10.1080/02533839.2012.701853

Khatoon S, Kim MH. (2020) Thermal comfort in the passenger compartment using a 3-D numerical analysis and comparison with Fanger’s comfort models. Energies, 13(3). https://doi.org/10.3390/en13030690 DOI: https://doi.org/10.3390/en13030690

Purnomo BC, Setiawan IC, Nugroho HA. (2020) Study on cooling system for parked cars using mini air cooler and exhaust fan. Automotive Experiences, 3(2): 81-88. https://doi.org/10.31603/ae.v3i2.3801 DOI: https://doi.org/10.31603/ae.v3i2.3801

Wang Y, Gao Q, Zhang T, Wang G, Jiang Z, Li Y. (2017) Advances in integrated vehicle thermal management and numerical simulation. Energies, 10(10). https://doi.org/10.3390/en10101636 DOI: https://doi.org/10.3390/en10101636

Brusey J, Hintea D, Gaura E, Beloe N. (2018) Reinforcement learning-based thermal comfort control for vehicle cabins. Mechatronics, 50: 413-421. https://doi.org/10.1016/j.mechatronics.2017.04.010 DOI: https://doi.org/10.1016/j.mechatronics.2017.04.010

Warey A, Kaushik S, Khalighi B, Cruse M, Venkatesan G. (2020) Data-driven prediction of vehicle cabin thermal comfort: using machine learning and high-fidelity simulation results. International Journal of Heat and Mass Transfer, 148: 119083. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119083 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119083

Buonocore C, De Vecchi R, Scalco V, Lamberts R. (2020) Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy and Buildings, 211: 109783. https://doi.org/10.1016/j.enbuild.2020.109783 DOI: https://doi.org/10.1016/j.enbuild.2020.109783

Downloads

Published

2022-01-04

How to Cite

Munahar, S., Purnomo, B. C., Izzudin, M., Setiyo, M., & Saudi, M. M. (2022). VEHICLE AIR CONDITIONER (VAC) CONTROL SYSTEM BASED ON PASSENGER COMFORT: A PROOF OF CONCEPT. IIUM Engineering Journal, 23(1), 370–383. https://doi.org/10.31436/iiumej.v23i1.1812

Issue

Section

Mechanical and Aerospace Engineering