FLOW INDUCED VIBRATION IN SQUARE CYLINDER OF VARIOUS ANGLES OF ATTACK

Authors

  • Nur Ain Shafiza Ramzi Universiti Teknologi Malaysia Kuala Lumpur https://orcid.org/0000-0002-9196-9575
  • Kee Quen Lee Malaysia-Japan International Institute of Technology
  • Nur Amira Balqis Mohd Zainuri Malaysia-Japan International Institute of Technology
  • Hooi-Siang Kang Universiti Teknologi Malaysia https://orcid.org/0000-0002-0292-4376
  • Nor’Azizi Othman Malaysia-Japan International Institute of Technology
  • Keng Yinn Wong Universiti Teknologi Malaysia

DOI:

https://doi.org/10.31436/iiumej.v23i1.1804

Keywords:

Flow induced vibration, square cylinder, galloping, angle of attack, tranquil zone

Abstract

An experimental study was carried out to identify the effect of angle of attack on flow-induced vibration (FIV) of square cylinders. The experiment was conducted at the Aeronautical and Wind Engineering Laboratory (AEROLAB), UTM Kuala Lumpur using a wind tunnel that was free from external wind conditions. A supporting structure was designed and fabricated to conduct this experiment. The importance of this support structure was to enable the rigid cylinder to suspend and vibrate freely upon excitation of wind speed. The results were analysed through the response of amplitude and frequency of the rigid cylinder over a velocity range of 0.5m/s to 4.0m/s. The results showed that for a square cylinder of ?=0°, vortex-induced vibration (VIV) occurred at low reduced velocity (UR) in range of 5 ? UR ? 10 and galloping occurred at higher reduced velocity which started at UR=15. A tranquil zone was found between VIV and galloping in the reduced velocity range of 10 ? UR ? 15. As for ?=22.5° and 45°, only VIV response was found at low reduced velocity in range of 4? UR ? 9.

ABSTRAK: Satu kajian eksperimentasi telah dilakukan bagi mengenal pasti pengaruh sudut serangan oleh getaran cetusan-aliran (FIV) dalam silinder persegi. Eksperimen ini dijalankan di Makmal Kejuruteraan Aeronautika dan Angin (AEROLAB), UTM Kuala Lumpur dengan menggunakan terowong angin yang bebas dari pengaruh angin luar. Struktur sokongan telah direka dan difabrikasi bagi tujuan eksperimen ini. Ini penting bagi membolehkan silinder pegun tergantung dan bergetar dengan bebas semasa ujian kelajuan angin. Dapatan kajian dianalisis melalui tindak balas amplitud dan frekuensi silinder pegun pada kadar halaju 0.5m/s sehingga 4.0m/s. Hasil kajian menunjukkan bahawa bagi silinder persegi ? = 0 °, getaran pengaruh-vorteks (VIV) berlaku pada halaju rendah (UR) dalam julat 5 ? UR ? 10 dan getaran lebih teruk telah ketara berlaku pada kadar halaju berkurang iaitu bermula pada UR = 15. Zon tenang dijumpai antara VIV dan getaran teruk pada kadar halaju berkurang 10 ? UR ? 15. Adapun pada ? = 22.5° dan 45°, hanya tindak balas VIV dijumpai pada halaju rendah dalam kadar 4? UR ? 9.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nur Ain Shafiza Ramzi, Universiti Teknologi Malaysia Kuala Lumpur

Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Malaysia, Mphil

Kee Quen Lee, Malaysia-Japan International Institute of Technology

Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Malaysia, Senior Lecturer

 

Hooi-Siang Kang, Universiti Teknologi Malaysia

Marine Technology Center, Institute for Vehicle System and Engineering, Universiti Teknologi Malaysia, Malaysia, Senior lecturer

Nor’Azizi Othman, Malaysia-Japan International Institute of Technology

Mechanical Precision Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Malaysia, Senior lecturer

Keng Yinn Wong, Universiti Teknologi Malaysia

School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Malaysia

References

Bearman PW, Gartshore IS, Maull DJ, Parkinson GV. (1987) Experiments on flow-induced vibration of a square-section cylinder. Journal of Fluids and Structures, 1(1):19-34. doi:https://doi.org/10.1016/S0889-9746(87)90158-7 DOI: https://doi.org/10.1016/S0889-9746(87)90158-7

A Rahman MA, Wan Hussin WN, Mohd MH, Noor Harun F, Quen LK, Paik JK. (2019) Modified wake oscillator model for vortex-induced motion prediction of low aspect ratio structures. Ships and Offshore Structures, 14(Sup1):1-9. doi:10.1080/17445302.2019.1593308 DOI: https://doi.org/10.1080/17445302.2019.1593308

Khalak A, Williamson CH. (1999) Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. Journal of fluids and Structures, 13(7-8):813-851. doi:https://doi.org/10.1006/jfls.1999.0236 DOI: https://doi.org/10.1006/jfls.1999.0236

Bearman PW. (1984) Vortex shedding from oscillating bluff bodies. AnRFM, 16:195-222.

doi:https://doi.org/10.1146/annurev.fl.16.010184.001211 DOI: https://doi.org/10.1146/annurev.fl.16.010184.001211

Sarpkaya T. (2004) A critical review of the intrinsic nature of vortex-induced vibrations. Journal of fluids and structures, 19(4): 389-447. doi:https://doi.org/10.1016/j.jfluidstructs.2004.02.005 DOI: https://doi.org/10.1016/j.jfluidstructs.2004.02.005

Carberry J, Sheridan J, Rockwell D. (2005) Controlled oscillations of a cylinder: forces and wake modes. Journal of Fluid Mechanics, 538: 31-69. doi:https://doi.org/10.1017/S0022112005005197 DOI: https://doi.org/10.1017/S0022112005005197

Govardhan RN, Williamson CHK. (2006) Defining the 'modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. Journal of fluid mechanics, 561: 147-180. doi:https://doi.org/10.1017/S0022112006000310 DOI: https://doi.org/10.1017/S0022112006000310

Ng YT, Luo SC, Chew YT. (2005) On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping. Journal of fluids and structures, 20(1): 141-146. doi:https://doi.org/10.1016/j.jfluidstructs.2004.02.008 DOI: https://doi.org/10.1016/j.jfluidstructs.2004.02.008

Klamo JT, Leonard A, Roshko A. (2006) The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. Journal of Fluids and Structures, 22(6-7): 845-856. doi:https://doi.org/10.1016/j.jfluidstructs.2006.04.009 DOI: https://doi.org/10.1016/j.jfluidstructs.2006.04.009

Shirakashi M, Chua CP, Salim SAZS. (2016) Design and fabrication of fiv apparatus for classroom lecture demonstration. Jurnal Teknologi, 78(9): 1-7. doi:https://doi.org/10.11113/jt.v78.4933 DOI: https://doi.org/10.11113/jt.v78.4933

Nemes A, Zhao J, Jacono DL, Sheridan J. (2012) The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack. doi:https://doi.org/10.1017/jfm.2012.353 DOI: https://doi.org/10.1017/jfm.2012.353

Hu G, Li C, Tse KT, Kwok KCS. (2018) Vortex induced vibration of an inclined finite-length square cylinder. European Journal of Mechanics-B/Fluids, 68:144-152. doi:https://doi.org/10.1016/j.euromechflu.2017.12.004 DOI: https://doi.org/10.1016/j.euromechflu.2017.12.004

Kawai H. (1995) Effects of angle of attack on vortex induced vibration and galloping of tall buildings in smooth and turbulent boundary layer flows. Journal of Wind Engineering and Industrial Aerodynamics, 54: 125-132. doi:https://doi.org/10.1016/0167-6105(94)00035-C DOI: https://doi.org/10.1016/0167-6105(94)00035-C

Zhou J, Nemes A, Jacono DL, Sheridan J. (2010) The effect of incidence angle variation of a square cylinder on its dynamic response and wake states. In Proceedings of the 17th Australasian Fluid Mechanics Conference, pp. 724-727). Auckland, New Zealand: AFMC

Obasaju ED, Ermshaus R, Naudascher E. (1990) Vortex-induced streamwise oscillations of a square-section cylinder in a uniform stream. Journal of Fluid Mechanics, 213:171-189. doi:http://dx.doi.org/10.11113/jt.v79.9987 DOI: https://doi.org/10.1017/S0022112090002270

Du X, Chen R, Dong H, Ma W, Xu H, Zhao Y. (2021) Aerodynamic characteristics of two closely spaced square cylinders in different arrangements. Journal of Wind Engineering and Industrial Aerodynamics, 208: 104462. doi: https://doi.org/10.1016/j.jweia.2020.104462 DOI: https://doi.org/10.1016/j.jweia.2020.104462

Yanovych V, Duda D, Uruba V. (2021) Structure turbulent flow behind a square cylinder with an angle of incidence. European Journal of Mechanics-B/Fluids, 85: 110-123. doi: https://doi.org/10.1016/j.euromechflu.2020.09.003 DOI: https://doi.org/10.1016/j.euromechflu.2020.09.003

Cao Y, Tamura T. (2020) Low-frequency unsteadiness in the flow around a square cylinder with critical angle of 14° at the Reynolds number of 2.2× 104. Journal of Fluids and Structures, 97:103087. doi : https://doi.org/10.1016/j.jfluidstructs.2020.103087 DOI: https://doi.org/10.1016/j.jfluidstructs.2020.103087

Peng S, Wang H, Zeng L, He X. (2019) Low-frequency dynamics of the flow around a finite-length square cylinder. Experimental Thermal and Fluid Science, 109: 109877. doi: https://doi.org/10.1016/j.expthermflusci.2019.109877 DOI: https://doi.org/10.1016/j.expthermflusci.2019.109877

Zhao J, Leontini J, Jacono DL, Sheridan J. (2019) The effect of mass ratio on the structural response of a freely vibrating square cylinder oriented at different angles of attack. Journal of Fluids and Structures, 86:200-212. doi: https://doi.org/10.1016/j.jfluidstructs.2019.02.008 DOI: https://doi.org/10.1016/j.jfluidstructs.2019.02.008

Zhao J, Leontini JS, Jacono DL, Sheridan J. (2014) Fluid–structure interaction of a square cylinder at different angles of attack. Journal of Fluid Mechanics, 747: 688-721. doi: https://doi.org/10.1017/jfm.2014.167 DOI: https://doi.org/10.1017/jfm.2014.167

Hassan JM, Mohamed TA, Mohammed WS, Alawee WH. (2014) Modeling the uniformity of manifold with various configurations. Journal of Fluids, 2014. https://doi.org/10.1155/2014/325259 DOI: https://doi.org/10.1155/2014/325259

Shaharuddin NMR, Darus IM. (2015) Experimental study of vortex-induced vibrations of flexibly mounted cylinder in circulating water tunnel. Acta Mechanica, 226(11): 3795-3806. doi: https://doi.org/10.1007/s00707-015-1438-8 DOI: https://doi.org/10.1007/s00707-015-1438-8

Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. (2009) Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Critical Care, 13(1):1-6. doi:https://doi.org/10.1186/cc7129 DOI: https://doi.org/10.1186/cc7129

Okajima A. (1982) Strouhal numbers of rectangular cylinders. Journal of Fluid Mechanics, 123: 379-398. doi: https://doi.org/10.1017/S0022112082003115 DOI: https://doi.org/10.1017/S0022112082003115

Maruai NM, Mat Ali MS, Ismail MH, Shaikh Salim SAZ. (2017) Downstream flat plate as the flow-induced vibration enhancer for energy harvesting. Journal of Vibration and Control, 24(16): 3555-3568. doi:https://doi.org/10.1177/1077546317707877 DOI: https://doi.org/10.1177/1077546317707877

Cui Z, Zhao M, Teng B, Cheng L. (2015) Two-dimensional numerical study of vortex-induced vibration and galloping of square and rectangular cylinders in steady flow. Ocean Engineering, 106:189-206. doi:https://doi.org/10.1016/j.oceaneng.2015.07.004 DOI: https://doi.org/10.1016/j.oceaneng.2015.07.004

Downloads

Published

2022-01-04

How to Cite

Ramzi, N. A. S., Lee, K. Q., MOHD ZAINURI, N. A. B., KANG, H. S. ., OTHMAN, N. ., & WONG, K. Y. . (2022). FLOW INDUCED VIBRATION IN SQUARE CYLINDER OF VARIOUS ANGLES OF ATTACK. IIUM Engineering Journal, 23(1), 358–369. https://doi.org/10.31436/iiumej.v23i1.1804

Issue

Section

Mechanical and Aerospace Engineering