ENHANCEMENT OF STABILITY ON AUTONOMOUS WAYPOINT MISSION OF QUADROTOR USING LQR INTEGRATOR CONTROL

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i1.1803

Keywords:

Optimal Control, Quadrotor, Stability, Waypoint

Abstract

The ability of the quadrotor in the waypoint trajectory tracking becomes an essential requirement in the completion of various missions nowadays. However, the magnitude of steady-state errors and multiple overshoots due to environmental disturbances leads to motion instability. These conditions make the quadrotor experience a shift and even change direction from the reference path. As a result, to minimize steady-state error and multiple overshoots, this study employs a Linear Quadratic Regulator control method with the addition of an Integrator. Comparisons between LQR without Integrator and LQR with Integrator were performed. They were implemented on a quadrotor controller to track square and zig-zag waypoint patterns. From experimental results, LQR without Integrator produce of 2 meters steady-state error and -1.04 meters undershoot average with an accuracy of 64.84 % for square pattern, along 3.19 meters steady-state error, and -1.12 meters undershoot average with an accuracy of 46.73 % for a zig-zag way. The LQR method with integrator produce of 1.06 meters steady-state error with accuracy 94.96 % without multiple-overshoot for square pattern, the 1.06 meters steady-state error, and -0.18 meters undershoot average with an accuracy of 86.49 % for the zig-zag way. The results show that the LQR control method with Integrator can minimize and improve steady-state error and multiple overshoots in quadrotor flight. The condition makes the quadrotor able to flying path waypoints with the correct system specification.

ABSTRAK: Kemampuan quadrotor dalam pengesanan lintasan waypoint menjadi syarat penting dalam menyelesaikan pelbagai misi pada masa kini. Walau bagaimanapun, besarnya ralat keadaan mantap dan banyak kelebihan kerana gangguan persekitaran menyebabkan ketidakstabilan pergerakan. Keadaan ini menjadikan quadrotor mengalami pergeseran dan bahkan mengubah arah dari jalur rujukan. Oleh itu, kajian ini menggunakan kaedah kawalan Linear Quadratic Regulator dengan penambahan integrator dalam meminimumkan ralat keadaan mantap dan banyak kelebihan. Perbandingan antara LQR tanpa Integrator dan LQR dengan Integrator dilakukan. Mereka dilaksanakan pada pengawal quadrotor untuk mengesan corak titik jalan persegi dan zig-zag. Dari hasil eksperimen, LQR tanpa Integrator menghasilkan ralat keadaan mantap 2 meter dan -1.04 meter rata-rata undur tembak dengan ketepatan 64.84% untuk corak persegi, sepanjang ralat keadaan tetap 3.19 meter, dan -1.12 meter rata-rata undur bawah dengan ketepatan 46.73 % untuk cara zig-zag. Kaedah LQR dengan integrator menghasilkan ralat keadaan mantap 1.06 meter dengan ketepatan 94.96% tanpa tembakan berlebihan untuk corak segi empat sama, ralat keadaan mantap 1.06 meter, dan rata-rata undur tembak -0.18 meter dengan ketepatan 86.49% untuk zig-zag cara. Hasilnya menunjukkan bahawa kaedah kawalan LQR dengan Integrator dapat meminimumkan dan memperbaiki ralat keadaan mantap dan banyak overhoot dalam penerbangan quadrotor. Keadaan tersebut menjadikan quadrotor dapat terbang ke titik jalan dengan spesifikasi sistem yang betul.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Tri Kuntoro Priyambodo, Gadjah Mada University

Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia

Aris Nasuha, Yogyakarta State University

Department of Electronics and Informatics Engineering, Yogyakarta State University, Yogyakarta, Indonesia

References

Kenzo N, Farid K, Satoshi S, Wei W, Daisuke N. (2010) Autonomous flying robot - unmanned aerial vehicle and micro aerial vehicle. Springer Tokyo Dordrecht Heidelberg London New York. doi: 10.1007/978-4-431-53856-1 DOI: https://doi.org/10.1007/978-4-431-53856-1

Tri KP, Agfi EP, Andi D. (2015) Optimizing control based on ant colony for quadrotor stabilization. IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, pp 1-4. doi: 10.1109/ICARES.2015.7429820 DOI: https://doi.org/10.1109/ICARES.2015.7429820

Luis RGC, Alejandro EDL, Rojrlio L, Claude P. (2013) Quad rotorcraft control (vision - based hovering and navigation), Springer Verlag London. doi: 10.1007/978-1-4471-4399-4 DOI: https://doi.org/10.1007/978-1-4471-4399-4

Jhon O, Rolf R. (2005) Waypoint guidance for small UAVs in wind, AIAA Virginia University of Washington, 6951: 1-12. https://doi.org/10.3182/20131120-3-FR-4045.00005 DOI: https://doi.org/10.3182/20131120-3-FR-4045.00005

Richard S, Mark K, Qi G. (2016) Unscented guidance for waypoint navigation of a fixed-wing UAV, American Control Conference (ACC) Boston, pp 473-478. doi: 10.1109/ACC.2016.7524959 DOI: https://doi.org/10.1109/ACC.2016.7524959

Anibal O, Bruno S. (2020) Aerial robotic manipulation (research, development and applications), Springer Tracts in Advanced Robotics, 129. doi: 10.1007/978-3-030-12945-3 DOI: https://doi.org/10.1007/978-3-030-12945-3

When-Ci L, Wun-Shin W. (2016) Design of an automatic docking system for quadcopters, Asia-Pacific Conference on Intelligent Robot, pp 199-203. doi: 10.1109/ACIRS.2016.7556212 DOI: https://doi.org/10.1109/ACIRS.2016.7556212

Nurul AI, Nor LO, Dwi P, Z MZ, Luhur B. (2015) Attitude Control of Quadrotor, ARPN Journal of Engineering and Applied Sciences, 10(22): 17206-17211.

Oktaf AD, Andi D, Tri KP. (2017) Model of linear quadratic regulator (LQR) control method in hovering state of quadrotor. Journal of Telecommunication, Electronic and Computer Engineering, 9(3): 135-143. https://jtec.utem.edu.my/jtec/article/view/1589/1891

Lucas A, Willian CR, Paulo ES, Renato AA. (2013) PID, LQR and LQR-PID on a quadcopter platform. IEEE International Conference on Informatics, Electronics and Vision, pp 1-6. doi: 10.1109/ICIEV.2013.6572698 DOI: https://doi.org/10.1109/ICIEV.2013.6572698

Emre CS, Ali TK. (2014) Optimal path tracking control of a quadrotor UAV, IEEE International Conference on Unmanned Aircraft Systems, pp. 115-125. doi: 10.1109/ICUAS.2014.6842246 DOI: https://doi.org/10.1109/ICUAS.2014.6842246

Josias GB, Darielson AS, Laurinda LN, Lucas VOF, Kaio MR, Antonio BSJ, Wilkley BC. (2019) Performance comparison between the PID and LQR controllers applied to robotic manipulator joint. IEEE 45th Annual Conference of the IEEE Industrial Electronics Society, pp 479-484. doi: 10.1109/IECON.2019.8927059 DOI: https://doi.org/10.1109/IECON.2019.8927059

Michael FE. (2015) LQR with integral feedback on a parrot mini-drone, MIT Cambridge, 02139.

Gusna HT, Andi D. (2017) Sistem kendali autopilot pada quadrotor untuk menuju titik koordinat dengan memanfaatkan GPS, Universitas Gadjah Mada, Indonesia.

Anup V, Pabba S, Jansi KR. (2017) Fully autonomous UAV. IEEE International Conference on Technical Advancements in Computers and Communications, pp 41-44. doi: 10.1109/ICTACC.2017.20 DOI: https://doi.org/10.1109/ICTACC.2017.20

Lucas VS, Alexandre SB, Mario S-F. (2015) Outdoor waypoint navigation with the AR. Drone quadrotor. IEEE International Conference on Unmanned Aircraft Systems, pp 303-311. doi: 10.1109/ICUAS.2015.7152304 DOI: https://doi.org/10.1109/ICUAS.2015.7152304

Tri KP, Andi D, Oktaf AD, Nur ASP. (2016) Optimizing control based on fine-tune PID using ant colony logic for moving control UAV systems. American Institute of Physics Conference Proceedings, 1755, 170011. https://doi.org/10.1063/1.4958613 DOI: https://doi.org/10.1063/1.4958613

Mohamad RR, Saeide H, Davoud S. (2013) Designing and simulation for vertical moving control of UAV system using PID, LQR and Fuzzy logic, International Journal of Electrical and Computer Engineering, 3(5):651-659. http://dx.doi.org/10.11591/ijece.v3i5.3440 DOI: https://doi.org/10.11591/ijece.v3i5.3440

James WF. (2007) Modelling and linear control of a quadcopter, Cranfield University.

Katsuhiko O. (2010) Modern control system, 5th Edition, Prentice-Hall.

Russell CH. (2016) Dynamics, 14th Edition, Hoboken, New Jersey: Pearson Prentice Hall.

Zoran B, Petar P, Denis K. (2016) Mathematical modelling of unmanned aerial vehicle with four rotors. Journal of Interdisciplinary Description of Complex Systems, 14(1): 88-100. Retrieved from https://ideas.repec.org/a/zna/indecs/v14y2016i1p88-100.html DOI: https://doi.org/10.7906/indecs.14.1.9

Gesang N, Andi D. (2017) Undesirable rolling minimization on the EDF missiles flight based on LQR methods, International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, pp 85-90. doi:10.1109/ICAMIMIA.2017.8387563 DOI: https://doi.org/10.1109/ICAMIMIA.2017.8387563

Andi D, Agfi EP, I MT, Agung W. (2019) The obstacle avoidance system in a fixed-wing UAV when flying low using LQR method. International Conference on Computer Engineering, Network and Intelligent Multimedia, pp 1-7. doi: 10.1109/CENIM48368.2019.8973292 DOI: https://doi.org/10.1109/CENIM48368.2019.8973292

Robert S. (2018) Design and development of the LQR optimal controller for the unmanned aerial vehicle. Obuda University, Budapest, Hungaria, 1(36): 45-54. doi:10.19062/1842-9238.2018.16.1.7 DOI: https://doi.org/10.19062/1842-9238.2018.16.1.7

Thomas S, Stefan R. (2017) Eliminating the effect of magnetic disturbances on the inclination estimates of inertial sensors. IFAC-PapersOnLine, 50(1): 8798-8803. https://doi.org/10.1016/j.ifacol.2017.08.1534 DOI: https://doi.org/10.1016/j.ifacol.2017.08.1534

Karl JA, Tore H. (2006) Advanced PID control, ISA Publishing.

Ariesa BZ, Andi D. (2017) Sistem kendali penghindar rintangan pada quadrotor menggunakan konsep linear quadratic. Indonesian Journal of Electronics and Instrumentations Systems, 7(2): 219-230. https://jurnal.ugm.ac.id/ijeis/article/view/25503/17912 DOI: https://doi.org/10.22146/ijeis.25503

Daniele G, Marc SA, Irene A, Maria A, Paolo A, Marco B, Pierluigi DB, Donatella D, Danilo G, Peter Hobbs, Veronika L, Tomasz N, Marco P, Marianna R, Riccardo S, Valerio S, Bernadette S, Fabrizio T. (2020) The use of unmanned aerial vehicles (UAVs) for engineering geology applications, Springer Bulletin of Engineering Geology and the Environment, 79: 3437-3481. https://doi.org/10.1007/s10064-020-01766-2 DOI: https://doi.org/10.1007/s10064-020-01766-2

Andi D, Ahmad A, Agfi EP. (2018) Translation movement stability control of quad tiltrotor using LQR and LQG, International Journal of Intelligent Systems and Applications, 10(3): 10-21. doi:10.5815/ijisa.2018.03.02 DOI: https://doi.org/10.5815/ijisa.2018.03.02

Downloads

Published

2022-01-04

How to Cite

Oktaf Agni Dhewa, Tri Kuntoro Priyambodo, Aris Nasuha, & Yasir Mohd Mustofa. (2022). ENHANCEMENT OF STABILITY ON AUTONOMOUS WAYPOINT MISSION OF QUADROTOR USING LQR INTEGRATOR CONTROL. IIUM Engineering Journal, 23(1), 129–158. https://doi.org/10.31436/iiumej.v23i1.1803

Issue

Section

Electrical, Computer and Communications Engineering