CONSOLIDATION INTEGRATED BUOYANCY EQUATION FOR SOFT GROUND IMPROVED WITH LIGHTWEIGHT POLYURETHANE FOAM

Authors

  • Diana Che Lat Universiti Teknologi MARA Pasir Gudang Johor https://orcid.org/0000-0002-3351-0133
  • Ismacahyadi Bagus Mohamed Jais Universiti Teknologi MARA image/svg+xml
  • Nazri Ali Universiti Teknologi Malaysia
  • Nor Zurairahetty Mohd Yunus Universiti Teknologi Malaysia
  • Nor Hibatul Wafi Nor Zarin Jabatan Kerja Raya Malaysia
  • Atiqah Najwa Zainuddin Universiti Teknologi MARA Pasir Gudang Johor https://orcid.org/0000-0002-6782-478X

DOI:

https://doi.org/10.31436/iiumej.v23i1.1781

Keywords:

Soft ground, Consolidation settlement, Buoyancy, Polyurethane, Lightweight

Abstract

ABSTRACT: Consolidation settlement occurs when a saturated soil is subjected to an increase in overburden pressure that causes a volume change in the soil. When a lightweight material is used as a ground improvement, the stress is reduced as the soft soil is partially removed and replaced by the lightweight material. In addition, the improved ground with lightweight material has a potential to uplift due to the buoyancy of lightweight material. The uplift force reduces the stress imposed on the underlying soil as it acts in the upward direction, thus further reducing the consolidation settlement. This study is executed to produce an alternative equation for consolidation settlement incorporating the buoyancy effect for lightweight polyurethane (PU) foam as a ground improvement method. A Rowe Cell consolidation laboratory test was conducted on untreated marine clay soil as well as on improved marine clay with different thicknesses of lightweight PU foam. Validation of the laboratory test results was done by finite element analysis, PLAXIS 2D. The thickness of PU foam governs the buoyancy and the hydrostatic pressure of water displaced by PU foam, which is incorporated in the alternative equation.  The alternative consolidation settlement equation is applicable for ground improved with lightweight polyurethane foam and found to be more economical and practical as the buoyancy is taken into account in the equation.

ABSTRAK: Mendapan pengukuhan berlaku apabila tanah tepu mengalami peningkatan tekanan beban yang menyebabkan perubahan isipadu tanah. Apabila bahan ringan digunakan sebagai penambahbaikan tanah, tekanan akan berkurang kerana sebahagian tanah lembut dikeluarkan dan diganti dengan bahan ringan. Selain itu, tanah yang diperbaiki dengan bahan ringan berpotensi untuk terangkat ke atas keranan daya apung bahan ringan. Daya angkat bahan ringan mengurangkan tekanan yang dikenakan ke atas tanah kerana daya bertindak ke arah atas, dan seterusnya megurangkan mendapan pengukuhan. Kajian ini dijalankan untuk menghasilkan persamaan alternatif bagi mendapan pengukuhan dan digabungkan dengan kesan daya apung untuk busa poliuretena ringan (PU) sebagai kaedah penambahbaikan tanah. Ujian makmal mendapan pengukuhan menggunakan peralatan Rowe Cell dilakukan pada tanah liat marin yang asal serta yang diperbaiki dengan ketebalan busa PU ringan yang berbeza. Pengesahan hasil ujian makmal dilakukan dengan analisis elemen terhingga, PLAXIS 2D. Ketebalan busa PU mempengaruhi daya apung dan tekanan hidrostatik bagi kedalaman air yang disesarkan oleh busa PU dan digabungkan dalam persamaan alternatif. Persamaan alternatif mendapan pengukuhan tersebut boleh digunapakai untuk pembaikan tanah menggunakan bahan ringan busa poliuretena dan didapati menjimatkan kos dan praktikal kerana keapungan diambilkira didalam persamaan tersebut.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ibrahim A, Huat BB, Asadi A, Nahazanan H. (2014) Foundation and embankment construction in peat: An overview. Electronic Journals of Geotechnical Engineering, 19: 10079-10094.

Zhang J, Zhai JF, Wang XM. (2014) Instrumented full scale test and numerical analysis to investigate performance of bamboo pile-mattress system as soil reinforcement for coastal embankment on soft clay. Applied Mechanics and Materials, 501: 2132-2137. DOI: https://doi.org/10.4028/www.scientific.net/AMM.501-504.2132

Low KS, Tioh NH, Ng SC. (2013) Lightweight concrete infill buoyant platform and the method thereof. World Inventor Award Festival, 2013

Howard GT. (2012) Polyurethane biodegradation. Environmental Science and Engineering 2012. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_14 DOI: https://doi.org/10.1007/978-3-642-23789-8_14

Bayer O. (1947) Polyurethanes. Mod Plast, 24:149–152. DOI: https://doi.org/10.1021/ed024p149.2

Buzzi O, Fityus S, Sasaki Y, Sloan S. (2008).. Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mechanics of Materials, 40: 1012-1021. DOI: https://doi.org/10.1016/j.mechmat.2008.07.002

Buzzi O, Fityus S, Sasaki Y, Sloan S. (2010) Use of expanding polyurethane resin to remediate expansive soil foundation. Canadian Geotechnical Journal, 47: 623-634. DOI: https://doi.org/10.1139/T09-132

Badri K. (2012). Biobased polyurethane from palm kernel oil based polyol. License InTech 2012

Ionescu M. (2005) Chemistry and technology of polyols for polyurethanes, Rapra Technology Limited, Shawbury, UK, ISBN 1859574912

Polyurethane global market size forecast 2021. https://www.statista.com/statistics/ 720449/global-polyurethane-market-size-forecast/ accessed on 25 September 2019

(11] Zeltins V, Yakushin V, Cabulis U, Kirpluks M. (2017) Crude tall oil as raw material for rigid polyurethane foams with low water absorption. Solid State Phenom, 267: 17–22. DOI: https://doi.org/10.4028/www.scientific.net/SSP.267.17

Athawale VD, Nimbalkar RV. (2011) Polyurethane dispersions based on sardine fish oil, soybean oil, and their interesterification products. J. Dispers. Sci. Technol, 32: 1014–1022. DOI: https://doi.org/10.1080/01932691.2010.497459

Pawar MS, Kadam AS, Dawane BS, Yemul OS. (2016) Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull, 73: 727–741. DOI: https://doi.org/10.1007/s00289-015-1514-1

Figovsky OL. (2000) Hybrid non-isocyanate polyurethane network polymers and composites formed therefrom. U.S. Patent, 6:120,905.

Guan J, Song Y, Lin Y, Yin X, Zuo M, Zhao Y, Tao X, Zheng Q. (2011) Progress in study of non-isocyanate polyurethane. Ind. Eng. Chem. Res, 50: 6517–6527. DOI: https://doi.org/10.1021/ie101995j

Li Z, Zhao Y, Yan S, Wang X, Kang M, Wang J, Xiang H. (2008) Catalytic synthesis of carbonated soybean oil. Catal. Lett, 123: 246–251. DOI: https://doi.org/10.1007/s10562-008-9414-8

Tamami GWSS .(2004). Using tetrabutylammonium bromide catalyst. U.S. Patent 20040230009 A1.

Rathod MA, Upadhyaya DS, Panchal SL. (2014) Preventation of hydrostatic uplift pressure underneath of basement floor slab in high water table area. International Journal of Futuristic Trends in Engineering and Technology, 1(03): 72-75.

Heath TL. (1897) The worlds of Archimedes. Edited in Modern Notation with Introductory chapters, Cambridge University Press, 257

Song LH, Liu Y, Mei GX, Zai JM. (2008) Experimental study on buoyancy effect on deep foundation in clay. Hydrogeology & Engineering Geology, 35(6): 80–84.

Song L, Kang X, and Mei G. (2017) Buoyancy force on shallow foundations in clayey soil: an experimental investigation based on the Half Interval Search, Ocean Engineering, 129: 637–641. DOI: https://doi.org/10.1016/j.oceaneng.2016.10.018

Ni P, Kang X, SongL, Mei G, Zhao Y. (2019) Model tests of buoyant force on underground structures. Journal of Testing and Evaluation, 47(2): 1216–1235. DOI: https://doi.org/10.1520/JTE20170017

Frydelund TE, Aaboer R. (2002) Lightweight filling materials for road construction. EPS Geofoam 3rd International Conference 2002, Salt Lake City

Stephen S. (2016) Pressure reduction on wide culverts with EPS geofoam backfill. Dissertations-ALL. 548. https://surface.syr.edu/etd/548

Rowe PW, Barden L. (1966) A new consolidation cell. Géotechnique, 16(2): 162-170. https://doi.org/10.1680/geot.1966.16.2.162 DOI: https://doi.org/10.1680/geot.1966.16.2.162

Head KH (1985). Manual of soil laboratory testing, 3: Effective stress tests pp.1129-1225

Premchitt J, Ho KS, Evans NC. (1995) Conventional and CRS Rowe cell consolidation test on some Hong Kong clays.

BS1377-Part 6:1990: Consolidation and permeability tests in hydraulic cells and with pore pressure measurement.

Brinkgreve RBJ (2002). Plaxis 2D Version 8, Material Models Manual

Saleh S, Ahmad K, Mohd Yunus N. (2020) Evaluating the toxicity of polyurethane during marine clay stabilisation. Environ Sci Pollut Res, 27: 21252–21259. https://doi.org/10.1007/s11356-020-08549-y DOI: https://doi.org/10.1007/s11356-020-08549-y

Al-Atroush ME, Sebaey TA. (2021) Stabilization of expansive soil using hydrophobic polyurethane foam: A review. Transportation Geotechnics, 27:100494. https://doi.org/10.1016/j.trgeo.2020.100494 DOI: https://doi.org/10.1016/j.trgeo.2020.100494

Abdurahman MN, Kasbi Basri AZ, Kassim A (2021). Assessment of physical and mechanical properties of polyurethane as ground improvement material for peat. Neutron, 20(2): 149–156. https://doi.org/10.29138/neutron.v21i1.99 DOI: https://doi.org/10.29138/neutron.v21i1.99

Downloads

Published

2022-01-04

How to Cite

Che Lat, D., Mohamed Jais, I. B., Ali, N., Mohd Yunus, N. Z., Nor Zarin, N. H. W., & Zainuddin, A. N. (2022). CONSOLIDATION INTEGRATED BUOYANCY EQUATION FOR SOFT GROUND IMPROVED WITH LIGHTWEIGHT POLYURETHANE FOAM. IIUM Engineering Journal, 23(1), 1–12. https://doi.org/10.31436/iiumej.v23i1.1781

Issue

Section

Civil and Environmental Engineering

Most read articles by the same author(s)