Secure Slicing and Allocation of Resources of 5G Networks In Software-Defined Networking / Network Functions Virtualization

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.1763

Keywords:

Deep learning, dynamic offloading, network slicing, resource allocation, traffic scheduling

Abstract

In 5G communications, higher data rates and lower latency are needed due to the high traffic rate. Though resource wastage is avoided by secure slicing, sliced networks are exploited by DDoS attackers. Thus, in the present paper, traffic-aware setting up is PRESENTED for resource allocation and secure slicing over the virtualization of 5G networks enabled by software-defined network/network functions. In the proposed method (called T-S3RA), to authenticate user devices, Boolean logic is used with key derivation based on passwords. Moreover, the traffic arrangement is based on the 5G access points. To implement secure resource allocation and network slicing, deep learning models are used. Renyi entropy computation is employed to predict the DDoS attackers. Through the experimental results, the effectiveness of the presented approach is proved.

ABSTRAK: Melalui komunikasi 5G, kadar data yang tinggi dan latensi yang rendah amat diperlukan kerana kadar trafik yang tinggi. Walaupun pembaziran sumber dapat dielakkan melalui pemotongan selamat, rangkaian yang dipotong sering dieksploitasi oleh penyerang DDoS. Oleh itu, kajian ini menyediakan persekitaran sedar-trafik bagi peruntukan sumber dan pemotongan selamat ke atas rangkaian 5G secara maya melalui fungsi rangkaian takrif-perisian. Melaui pendekatan yang dicadangkan (iaitu T-S3RA), peranti pengguna disahkan terlebih dahulu menggunakan logik Boolean dengan perolehan kunci berdasarkan kata laluan. Di samping itu, susunan trafik adalah berdasarkan titik akses 5G. Bagi melaksanakan peruntukan sumber yang selamat dan pemotongan rangkaian, model pembelajaran mendalam telah digunakan. Pengiraan Entropi Renyi dibuat bagi meramal penyerang DDoS. Dapatan eksperimen mengesahkan keberkesanan pendekatan yang dicadangkan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ramadhan AJ. (2021) T-S3RA: Traffic-aware scheduling for secure slicing and resource allocation in SDN/NFV Enabled 5G Networks. Int J of Eng Trend and Tech, 69: 215-232. https://doi.org/10.14445/22315381/IJETT-V69I7P229 DOI: https://doi.org/10.14445/22315381/IJETT-V69I7P229

Barakabitze AA, Ahmad A, Mijumbi R, Hines A. (2020) 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput Netw, 167: 106984. https://doi.org/10.1016/j.comnet.2019.106984 DOI: https://doi.org/10.1016/j.comnet.2019.106984

Barmpounakis S, Maroulis N, Papadakis M, Tsiatsios G, Soukaras D, Alonistioti N. (2020) Network slicing-enabled RAN management for 5G: Cross layer control based on SDN and SDR. Comput Netw, 166: 106987. https://doi.org/10.1016/j.comnet.2019.106987 DOI: https://doi.org/10.1016/j.comnet.2019.106987

Ramadhan AJ. (2022) Overview and Comparison of Candidate 5G Waveforms: FBMC, UFMC, and F-OFDM. Int J of Comp Net and Infor Sec, Accepted. DOI: https://doi.org/10.5815/ijcnis.2022.02.03

Borylo P, Tornatore M, Jaglarz P, Shahriar N, Cho?da P, Boutaba R (2020) Latency and energy-aware provisioning of network slices in cloud networks. Comput Commun, 157: 1-19. https://doi.org/10.1016/j.comcom.2020.03.050 DOI: https://doi.org/10.1016/j.comcom.2020.03.050

Boutigny F, Betgé-Brezetz S, Blanc G, Lavignotte A, Debar H, Jmila H (2020) Solving security constraints for 5G slice embedding: A proof-of-concept. Comput Sec, 89: 101662. https://doi.org/10.1016/j.cose.2019.101662 DOI: https://doi.org/10.1016/j.cose.2019.101662

Tang L, Zhao G, Wang C, Zhao P, Chen Q (2018) Queue-aware reliable embedding algorithm for 5G network slicing. Comput Netw, 146:138-150. https://doi.org/10.1016/j.comnet.2018.09.014 DOI: https://doi.org/10.1016/j.comnet.2018.09.014

Kim Y, Kim S, Lim H (2019) Reinforcement learning based resource management for network slicing. Appl Sci, 9:2361. https://doi.org/10.3390/app9112361 DOI: https://doi.org/10.3390/app9112361

Raza MR, Natalino C, Öhlen P, Wosinska L, Monti P. (2019) Reinforcement learning for slicing in a 5G flexible RAN. J Lightwave Technol, 37: 5161-5169. https://doi.org/10.1109/JLT.2019.2924345 DOI: https://doi.org/10.1109/JLT.2019.2924345

Sun G, Xiong K, Boateng GO, Liu G, Jiang W. (2020) Resource slicing and customization in RAN with dueling deep Q-Network. J Network Comput Appl, 157: 102573. https://doi.org/10.1016/j.jnca.2020.102573 DOI: https://doi.org/10.1016/j.jnca.2020.102573

Ma T, Zhang Y, Wang F, Wang D, Guo D. (2020) Slicing resource allocation for eMBB and URLLC in 5G RAN. Wirel Commun Mob Comput, 2020: 1-11. https://doi.org/10.1155/2020/6290375 DOI: https://doi.org/10.1155/2020/6290375

Coronado E, Khan SN, Riggio R. (2019) 5G-EmPOWER: A software-defined networking platform for 5G radio access networks. IEEE Trans Netw Serv Manage, IEEE 16: 715-728. https://doi.org/10.1109/TNSM.2019.2908675 DOI: https://doi.org/10.1109/TNSM.2019.2908675

Sathi VN, Srinivasan M, Thiruvasagam PK, Murthy SR (January 2020) Novel protocols to mitigate network slice topology learning attacks and protect privacy of users’ service access behavior in softwarized 5G networks. IEEE Trans Depend Sec Comput, 1. https://doi.org/10.1109/TDSC.2020.2968885 DOI: https://doi.org/10.1109/TDSC.2020.2968885

Thantharate A, Paropkari R, Walunj V, Beard C, Kankariya P. (2020) Secure5G: A deep learning framework towards a secure network slicing in 5G and beyond. Proceedings of the 10th annual computing and communication workshop and Conference (CCWC), 72020:0852 DOI: https://doi.org/10.1109/CCWC47524.2020.9031158

Ni J, Lin X, Shen XS. (2018) Efficient and secure service-oriented authentication supporting network slicing for 5G-enabled IoT. IEEE J Select Areas Commun, 36: 644-657. https://doi.org/10.1109/JSAC.2018.2815418 DOI: https://doi.org/10.1109/JSAC.2018.2815418

Afolabi I, Taleb T, Samdanis K, Ksentini A, Flinck H. (2018) Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutorials, 20: 2429-2453. https://doi.org/10.1109/COMST.2018.2815638 DOI: https://doi.org/10.1109/COMST.2018.2815638

Khan S, Khattak HA, Almogren A, Shah MA, Ud Din I, Alkhalifa I, Guizani M. (2020) 5G vehicular network resource management for improving radio access through machine learning. IEEE Access, 8: 6792-6800. https://doi.org/10.1109/ACCESS.2020.2964697 DOI: https://doi.org/10.1109/ACCESS.2020.2964697

Ye Q, Zhuang W, Zhang S, Jin AL, Shen X, Li X. (2018) Dynamic radio resource slicing for a two-tier heterogeneous wireless network. IEEE Trans Veh Technol, 67: 9896-9910. https://doi.org/10.1109/TVT.2018.2859740 DOI: https://doi.org/10.1109/TVT.2018.2859740

Le LV, Lin BSP, Tung LP, Sinh D. (2018) SDN/NFV, machine learning, and big data driven network slicing for 5G. Proc IEEE. World Forum (5GWF) 5g: 20-25. DOI: https://doi.org/10.1109/5GWF.2018.8516953

Costanzo S, Fajjari I, Aitsaadi N, Langar R. (2018) Dynamic network slicing for 5G IoT and eMBB services: A new design with prototype and implementation results. Proceedings of the 3rd Cloudification of the Internet of Things (CIoT), 2018: 1-7. DOI: https://doi.org/10.1109/CIOT.2018.8627115

Kammoun A, Tabbane N, Diaz G, Dandoush A, Achir N. (2018) End-to-end efficient heuristic algorithm for 5G network slicing. Proceedings of the 2018 IEEE 32nd international conference on Advanced Information Networking and Applications (AINA), pp 386-392 DOI: https://doi.org/10.1109/AINA.2018.00065

Trivisonno R, Condoluci M, An X, Mahmoodi T. (2018) mIoT slice for 5G systems: Design and performance evaluation. Sensors (Basel), 18: 635. https://doi.org/10.3390/s18020635 DOI: https://doi.org/10.3390/s18020635

Šeremet I, ?auševi? S. (2019) Benefits of using 5G network slicing to implement vehicle-to-everything (V2X) technology. Proceedings of the 2019 IEEE 18th international symposium Infoteh-Jahorina (INFOTEH), pp 1-6 DOI: https://doi.org/10.1109/INFOTEH.2019.8717780

Wang T, Guo Z, Chen H, Liu W. (2018) BWManager: Mitigating denial of service attacks in software-defined networks through bandwidth prediction. IEEE Trans Netw Serv Manage, 15: 1235-1248. https://doi.org/10.1109/TNSM.2018.2873639 DOI: https://doi.org/10.1109/TNSM.2018.2873639

Porambage P, Miche Y, Kalliola A, Liyanage M, Ylianttila M. (2019) Secure keying scheme for network slicing in 5G architecture. Proceedings of the 2019 IEEE conference on standards for communications and networking (CSCN), pp. 1-6 DOI: https://doi.org/10.1109/CSCN.2019.8931330

Li X, Guo C, Gupta L, Jain R. (2019) Efficient and secure 5G core network slice provisioning based on VIKOR approach. IEEE Access 7: 150517-150529. https://doi.org/10.1109/ACCESS.2019.2947454 DOI: https://doi.org/10.1109/ACCESS.2019.2947454

Ma L, Wen X, Wang L, Lu Z, Knopp R. (2018) An SDN/NFV based framework for management and deployment of service based 5G core network. China Commun, 15: 86-98. https://doi.org/10.1109/CC.2018.8485472 DOI: https://doi.org/10.1109/CC.2018.8485472

Dawaliby S, Bradai A, Pousset Y. (2019) Distributed network slicing in large scale IoT based on coalitional multi-game theory. IEEE Trans Netw Serv Manage, 16: 1567-1580. https://doi.org/10.1109/TNSM.2019.2945254 DOI: https://doi.org/10.1109/TNSM.2019.2945254

AlQahtani SA. (2020) An efficient resource allocation to improve QoS of 5G slicing networks using general processor sharing-based scheduling algorithm. Int J Commun Syst, 33:e4250. https://doi.org/10.1002/dac.4250 DOI: https://doi.org/10.1002/dac.4250

Koutlia K, Ferrús R, Coronado E, Riggio R, Casadevall F, Umbert A, Pérez-Romero J. (2019) Design and experimental validation of a software-defined radio access network testbed with slicing support. Wirel Commun Mob Comput 2019:1-17. https://doi.org/10.1155/2019/2361352 DOI: https://doi.org/10.1155/2019/2361352

An N, Kim Y, Park J, Kwon DH, Lim H. (2019) Slice management for quality of service differentiation in wireless network slicing. Sensors, 19: 2745. https://doi.org/10.3390/s19122745 DOI: https://doi.org/10.3390/s19122745

Addad RA, Bagaa M, Taleb T, Dutra DLC, Flinck H. (2019) Optimization model for cross-domain network slices in 5G networks. IEEE Trans on Mobile Comput, 19: 1156-1169. https://doi.org/10.1109/TMC.2019.2905599 DOI: https://doi.org/10.1109/TMC.2019.2905599

Alfoudi ASD, Newaz SHS, Otebolaku A, Lee GM, Pereira R. (2019) An efficient resource management mechanism for network slicing in a LTE network. IEEE Access, 7:89441-89457. https://doi.org/10.1109/ACCESS.2019.2926446 DOI: https://doi.org/10.1109/ACCESS.2019.2926446

Narmanlioglu O, Zeydan E, Arslan SS. (2018) Service-aware multi-resource allocation in software-defined next generation cellular networks. IEEE Access, 6: 20348–20363. https://doi.org/10.1109/ACCESS.2018.2818751 DOI: https://doi.org/10.1109/ACCESS.2018.2818751

Afaq M, Iqbal J, Ahmed T, Ul Islam I, Khan M, Khan MS. (2020) Towards 5G network slicing for vehicular ad-hoc networks: An end-to-end approach. Comput Commun, 149: 252-258. https://doi.org/10.1016/j.comcom.2019.10.018 DOI: https://doi.org/10.1016/j.comcom.2019.10.018

Albonda HDR, Pérez-Romero J (2019) An efficient RAN slicing strategy for a heterogeneous network with eMBB and V2X services. IEEE Access, 7: 44771-44782. https://doi.org/10.1109/ACCESS.2019.2908306 DOI: https://doi.org/10.1109/ACCESS.2019.2908306

Van Huynh N, Hoang DT, Nguyen DN, Dutkiewicz E. (2019) Optimal and fast real-time resource slicing with deep dueling neural networks. IEEE J Sel Areas Commun, 37: 1455-1470. DOI: https://doi.org/10.1109/JSAC.2019.2904371

Aicardi M, Bruschi R, Davoli F, Lago P, Pajo JF. (2018) Decentralized scalable dynamic load balancing among virtual network slice instantiations. Proceedings of IEEE Globecom Workshops (GC Wkshps):1-7. DOI: https://doi.org/10.1109/GLOCOMW.2018.8644472

Wang P, Lan J, Chen S. (2014) OpenFlow based flow slice load balancing. China Commun 11: 72-82. https://doi.org/10.1109/CC.2014.7019842 DOI: https://doi.org/10.1109/CC.2014.7019842

Chahlaoui F, El-Fenni MR, Dahmouni H. (2019) Performance analysis of load balancing mechanisms in SDN networks. Proceedings of the 2nd International Conference on Networking. Inf Syst Sec:1–8. DOI: https://doi.org/10.1145/3320326.3320368

Kamath S, Singh S, Kumar MS. (2019) Multiclass queueing network modeling and traffic flow analysis for SDN-enabled mobile core networks with network slicing. IEEE Access, 8: 417-430. https://doi.org/10.1109/ACCESS.2019.2959351 DOI: https://doi.org/10.1109/ACCESS.2019.2959351

Chergui H, Verikoukis C. (2019) Offline SLA-constrained deep learning for 5G networks reliable and dynamic end-to-end slicing. IEEE J Select Areas Commun, 38: 350-360. https://doi.org/10.1109/JSAC.2019.2959186 DOI: https://doi.org/10.1109/JSAC.2019.2959186

AlQahtani SA, Alhomiqani WA. (2020) A multi-stage analysis of network slicing architecture for 5G mobile networks. Telecommun Syst, 73: 205–221. https://doi.org/10.1007/s11235-019-00607-2 DOI: https://doi.org/10.1007/s11235-019-00607-2

Qu K, Zhuang W, Ye Q, Shen X, Li X, Rao J. (2020) Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks. IEEE Trans Commun, 68: 2394-2408. https://doi.org/10.1109/TCOMM.2020.2968907 DOI: https://doi.org/10.1109/TCOMM.2020.2968907

Park K, Li J, Feng SC. (2018) Scheduling policies in flexible Bernoulli lines with dedicated finite buffers. J Manuf Syst, 48: 33-48. https://doi.org/10.1016/j.jmsy.2018.05.013 DOI: https://doi.org/10.1016/j.jmsy.2018.05.013

Md. Zaki FAMMd, Chin TS. (2019) FWFS: Selecting robust features towards reliable and stable traffic classifier in SDN. IEEE Access, 7: 166011-166020. https://doi.org/10.1109/ACCESS.2019.2953565 DOI: https://doi.org/10.1109/ACCESS.2019.2953565

Downloads

Published

2022-07-04

How to Cite

Al-Aameri, A. J. R. (2022). Secure Slicing and Allocation of Resources of 5G Networks In Software-Defined Networking / Network Functions Virtualization. IIUM Engineering Journal, 23(2), 85–103. https://doi.org/10.31436/iiumej.v23i2.1763

Issue

Section

Electrical, Computer and Communications Engineering