Effect of Feed Flowrates on the Physical Properties and Antioxidant of Mahkota Dewa (Phaleria Macrocarpa) Encapsulated Powder

Authors

DOI:

https://doi.org/10.31436/iiumej.v23i2.1713

Keywords:

Mahkota Dewa, Spray drying, antioxidant, maltodextrin

Abstract

This paper presents an experimental study on the encapsulation of Mahkota Dewa extracts by maltodextrin using spray drying. The bioactive compound from dried Mahkota Dewa was obtained using a subcritical water extraction process prior to a spray drying process. The effect of feed flow rate (485 to 2115 ml/h) was investigated using one-factor-at-a-time (OFAT). It was observed that the mean particle size increase varied from 3.55 to 8.38 µm when the feed flow rate increased from 485 to 2115 ml/h. Moisture content increased 4.88 to 6.83% as the feed flow rate increased from 485 to 2115 ml/h, whereas the antioxidant activity increased slightly from 90.48 to 91.65%. The findings from this study showed that decrease in feed flow rate reduces antioxidant activity, moisture content, and particle size.

ABSTRAK: Kertas kerja ini adalah berkenaan kajian eksperimen melalui proses pengkapsulan ekstrak buah Mahkota Dewa dengan menggunakan maltodekstrin melalui teknik pengeringan semburan. Sebatian bioaktif dari buah Mahkota Dewa kering diperoleh melalui teknik pengekstrakan air subkritikal sebelum proses pengeringan semburan. Kesan kadar aliran masuk (485 hingga 2115 ml/jam) dikaji menggunakan konsep satu-faktor-pada-satu-masa (OFAT). Dapatan kajian mendapati bahawa purata saiz zarah meningkat dari 3.55 kepada 8.38 µm ketika kadar aliran masuk meningkat dari 485 sehingga 2115 ml/jam. Kandungan kelembapan meningkat dari 4.88 kepada 6.83% dengan kenaikan kadar aliran masuk dari 485 hingga 2115 ml/jam, sedangkan aktiviti antioksida meningkat sedikit dari 90.48 hingga 91.65%. Dapatan kajian menunjukkan bahawa penurunan kadar aliran masuk berkurang melalui aktiviti antioksida, kandungan kelembapan dan saiz zarah.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Altaf R, Asmawi MZ, Dewa AA, Sadikun A, Umar MI. (2013) Phytochemistry and medicinal properties of Phaleria macrocarpa (Scheff.) Boerl. extracts. Pharmacognosy Review, 7(13): 73-80. DOI: 10.4103/0973-7847.112853 DOI: https://doi.org/10.4103/0973-7847.112853

Trilaksana N, Riwanto I, Tjandrawinata RR, Winarto R. (2017) Inhibition of Mahkota Dewa (Phaleria macrocarpa) bioactive fraction on proliferation of human retinoblastoma tumor cells Y-79 through suppression of mRNA level of cyclin E. Asian Pacific Journal of Tropical Biomedicine, 7(4): 280-287. https://doi.org/10.1016/j.apjtb.2017.01.001 DOI: https://doi.org/10.1016/j.apjtb.2017.01.001

Ramdani ED, Marlupi UD, Sinambela J, Tjandrawinata RR. (2017) Isolation and identification of compounds from Phaleria macrocarpa (Scheff.) Boerl fruit extract. Asian Pacific Journal of Tropical Biomedicine, 7(4): 300-305. DOI : 10.1016/j.apjtb.2016.12.018 DOI: https://doi.org/10.1016/j.apjtb.2016.12.018

Fariza N, Luqman Chuah A, Pin KY, Dayang Radiah AB. (2014) Optimisation of extraction of Phaleria macrocarpa leaves. Medicinal & Aromatic Plants 3(1): 1000149. DOI: 10.4172/2167-0412.1000149 DOI: https://doi.org/10.4172/2167-0412.1000149

Alara OR, Abdul Mudalip SK, Abdurahman NH, Mahmoud MS, Obanijesu EO-O. (2019) Data on parametric influence of microwave-assisted extraction on the recovery yield, total phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chemical Data Collections, 24: 100277. https://doi.org/10.1016/j.cdc.2019.100277 DOI: https://doi.org/10.1016/j.cdc.2019.100277

Kim W-J, Veriansyah B, Lee Y-W, Kim J-H, Kim J-D. (2010) Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. Journal of Industrial and Engineering Chemistry, 16(3): 425-430. doi:10.1016/j.jiec.2009.08.008 DOI: https://doi.org/10.1016/j.jiec.2009.08.008

Hashim NA, Abdul Mudalip SK, Harun N, Man RC, Sulaiman SZ, Arshad ZIM, Shaarani SM, Azmir J. (2019) Mahkota Dewa subcritical water extraction process: Experimental and molecular dynamics simulation study. Chemical Engineering & Technology, 42(9): 1747-1756. https://doi.org/10.1002/ceat.201800638 DOI: https://doi.org/10.1002/ceat.201800638

Azmir J, Zaidul ISM, Sharif KM, Uddin MS, Jahurul MHA, Jinap S, Hajeb P, Mohamed A. (2014) Supercritical carbon dioxide extraction of highly unsaturated oil from Phaleria macrocarpa seed. Food Research International, 65: 394-400. https://doi.org/10.1016/j.foodres.2014.06.049 DOI: https://doi.org/10.1016/j.foodres.2014.06.049

Gallo L, Ramírez-Rigo MV, Piña J, Bucalá V. (2015) A comparative study of spray-dried medicinal plant aqueous extracts: Drying performance and product quality. Chemical Engineering Research and Design, 104 681-694. https://doi.org/10.1016/j.cherd.2015.10.009 DOI: https://doi.org/10.1016/j.cherd.2015.10.009

Fang ZX, Bhandari B. (2011) Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3): 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093 DOI: https://doi.org/10.1016/j.foodchem.2011.05.093

Goula AM, Adamopoulos KG. (2010) Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Innovative Food Science & Emerging Technologies, 11(2): 342-351. https://doi.org/10.1080/07373930802046377. DOI: https://doi.org/10.1080/07373930802046377

Raja KCM, Sankarikutty B, Sreekumar M, Jayalekshmy A, Narayanan CS. (1989) Material characterization studies of maltodextrin samples for the use of wall material. Starch - Stärke, 41(8): 298-303. https://doi.org/10.1002/star.19890410805 DOI: https://doi.org/10.1002/star.19890410805

Dadi DW, Emire SA, Hagos AD, Eun J-B. (2020) Effects of spray drying process parameters on the physical properties and digestibility of the microencapsulated product from Moringa stenopetala leaves extract. Cogent Food & Agriculture, 5(1): 1690316. https://doi.org/10.1080/23311932.2019.1690316 DOI: https://doi.org/10.1080/23311932.2019.1690316

Garavand F, Rahaee S, Vahedikia N, Jafari SM. (2019) Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends in Food Science & Technology, 89: 26-44. https://doi.org/10.1016/j.tifs.2019.05.005 DOI: https://doi.org/10.1016/j.tifs.2019.05.005

Ray S, Raychaudhuri U, Chakraborty R. (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13: 76-83. http://dx.doi.org/10.1016/j.fbio.2015.12.009 DOI: https://doi.org/10.1016/j.fbio.2015.12.009

Tontul I, Topuz A. (2017) Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63: 91-102. https://doi.org/10.1016/j.tifs.2017.03.009 DOI: https://doi.org/10.1016/j.tifs.2017.03.009

Can Karaca A, Guzel O, Ak MM. (2016) Effects of processing conditions and formulation on spray drying of sour cherry juice concentrate. Journal of the Science of Food and Agriculture, 96(2): 449-455. https://doi.org/10.1002/jsfa.7110 DOI: https://doi.org/10.1002/jsfa.7110

Chegini GR, Ghobadian B. (2005) Effect of spray-drying conditions on physical properties of orange juice powder, Drying Technology, 23(3): 657-668. DOI: 10.1081/DRT-200054161 DOI: https://doi.org/10.1081/DRT-200054161

Hong J-H, Choi Y-H. (2007) Physico?chemical properties of protein?bound polysaccharide from Agaricus blazei Murill prepared by ultrafiltration and spray drying process. International Journal of Food Science & Technology, 42(1): 1-8. https://doi.org/10.1111/j.1365-2621.2005.01116.x DOI: https://doi.org/10.1111/j.1365-2621.2005.01116.x

Braga V, Guidi LR, de Santana RC, Zotarelli MF. (2020) Production and characterization of pineapple-mint juice by spray drying. Powder Technology, 375: 409-419. https://doi.org/10.1016/j.powtec.2020.08.012 DOI: https://doi.org/10.1016/j.powtec.2020.08.012

Tonon RV, Brabet C, Hubinger MD. (2008) Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying, Journal of Food Engineering, 88(3): 411-418. https://doi.org/10.1016/j.jfoodeng.2008.02.029 DOI: https://doi.org/10.1016/j.jfoodeng.2008.02.029

Rezende YRRS, Nogueira JP, Narain N. (2018) Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254: 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026 DOI: https://doi.org/10.1016/j.foodchem.2018.02.026

Phisut N. (2012) Spray drying technique of fruit juice powder: Some factors influencing the properties of product. International Food Research Journal, 19: 1297-1306.

Ding J, Xu Z, Qi B, Cui S, Wang T, Jiang L, Zhang Y, Sui X. (2019) Fabrication and characterization of soybean oil bodies encapsulated in maltodextrin and chitosan-EGCG conjugates: An in vitro digestibility study. Food Hydrocolloids, 94: 519-527. https://doi.org/10.1016/j.foodhyd.2019.04.001 DOI: https://doi.org/10.1016/j.foodhyd.2019.04.001

Nijdam JJ, Langrish TAG. (2006) The effect of surface composition on the functional properties of milk powders. Journal of Food Engineering, 77(4): 919-925. https://doi.org/10.1016/j.jfoodeng.2005.08.020 DOI: https://doi.org/10.1016/j.jfoodeng.2005.08.020

Downloads

Published

2022-07-04

How to Cite

Abdul Mudalip, S. K., Kathiman, M. N., & Gimbun, J. . (2022). Effect of Feed Flowrates on the Physical Properties and Antioxidant of Mahkota Dewa (Phaleria Macrocarpa) Encapsulated Powder. IIUM Engineering Journal, 23(2), 1–9. https://doi.org/10.31436/iiumej.v23i2.1713

Issue

Section

Chemical and Biotechnology Engineering