ANALYTICAL AND NUMERICAL THERMAL ANALYSIS ON FRICTION STIR WELDING USING POLYGONAL TOOL PIN
DOI:
https://doi.org/10.31436/iiumej.v22i2.1707Keywords:
Thermal model, friction stir welding, polygonal tool pin, transient modelAbstract
Frictional heat generation in the tool/matrix interface followed by the stirring of material along the weld line causes plasticized solid state joining in friction stir welding. In this paper, the existing torque based thermo-mechanical model for the tools with cylindrical pins is remodified for the polygonal tool pin profile by introducing novel multiplication factors with respect to the number of sides in the tool pin geometry. The variation in the effective heat supply with respect to the chosen pin geometry was analyzed. A comparative analysis of the proposed analytical model with the existing model was also carried out to understand the accuracy of the proposed model. Furthermore, a transient thermal numerical modelling was carried out in the view of understanding the change in process peak temperature in the stir zone and change in temperature gradient along the heat affected zone with respect to the change in pin geometry for the opted set of process input parameters. An analytically estimated heat-input-based numerical model was adopted in the present study. It was observed that the process peak temperature was directly proportional to the number of sides in the tool pin.
ABSTRAK: Penjanaan haba geseran antara muka pada alat/matrik diikuti dengan pengacauan material sepanjang garis kimpalan menyebabkan keadaan plastik pepejal melekat bersama geseran kimpalan pengacau. Kajian ini berkaitan tork sedia ada berdasarkan model mekanikal-terma bagi alat pin silinder yang terubah suai bagi profil pin alat poligon dengan memperkenalkan faktor gandaan berdasarkan bilangan sisi geometri alat pin. Perubahan pada bekalan haba efektif berdasarkan geometri pin pilihan telah dikaji. Analisis bandingan pada model analitik yang dicadang bersama model sedia ada, telah dilakukan bagi memahami ketepatan model cadangan. Tambahan, model transien numerikal terma telah dibuat bagi memahami proses perubahan suhu puncak ketika zon pengacauan dan perubahan gradien suhu sepanjang zon terkena haba perubahan geometri pin pada set proses parameter input terpilih. Kajian ini mengaplikasi model numerik berdasarkan input anggaran haba secara analitik. Dapatan kajian menunjukkan suhu puncak proses adalah berkadar langsung dengan bilangan sisi pin alat.
Downloads
Metrics
References
Leon JS, Jayakumar V. (2019) An investigation of analytical modelling of friction stir welding. Int. J. Mech. Prod. Eng. Res. Dev., 9(1): 179-189.
doi: 10.24247/ijmperdfeb201918. DOI: https://doi.org/10.24247/ijmperdfeb201918
Ulysse P. (2022) Three-dimensional modeling of the friction stir welding process. Int. J. Mach. Tools. Manuf., 42: 1549–1557. DOI: https://doi.org/10.1016/S0890-6955(02)00114-1
Shi Q, Dickerson T, Shercliff HR. (2003) Thermo-mechanical FE modelling of friction stir welding of Al-2024 including tool loads, 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14-16 May 2003.
Lockwood WD, Reynolds AP. (2003) Simulation of the global response of a friction stir weld using local constitutive behavior. Materials Science and Engineering, A339: 35-42. DOI: https://doi.org/10.1016/S0921-5093(02)00116-8
Li W, Shi S, Wang F, Zhang Z, Ma T, Li J. (2012) Numerical simulation of friction welding processes based on ABAQUS environment. J. Eng. Sci. Tech. Rev., 5: 10-19.
Sanjeev NK, Vinayak M, Suresh Hebbar H. (2014) Effect of coefficient of friction in finite element modeling of friction stir welding and its importance in manufacturing process modelling applications. Int. J. Appl. Sci. Eng. Res., 3: 755-762.
Palanivel R, Mathews PK, Murugan N, Dinaharan I. (2012) Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminium alloys. Mater. Des., 40: 7-16. DOI: https://doi.org/10.1016/j.matdes.2012.03.027
Labesh Kumar C, Jayakumar V, Bharathiraja G. (2020) Optimization of welding parameters for friction stir spot welding of AA6062with similar and dissimilar thicknesses. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2019.07.204. DOI: https://doi.org/10.1016/j.matpr.2019.07.204
Labesh Kumar C, Jayakumar V, Bharathiraja G. (2019) Optimisation of friction stir spot welding parameters of AA6062-ST1020 lap joint. Int. J. Mech. Prod. Eng. Res. Dev., 3: 10727-10732.
Suresha CN, Rajaprakash BM, Upadhya S. (2011) A study of the effect of tool pin profiles on tensile strength of welded joints produced using friction stir welding process. Mater. Manuf., 26(9): 1111-1116. DOI: https://doi.org/10.1080/10426914.2010.532527
Fujii H, Cui L, Maeda M, Nogi K. (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminium alloys. Mater. Sci. Eng., 419: 25-31. DOI: https://doi.org/10.1016/j.msea.2005.11.045
Stephen Leon J, Bharathiraja G, Jayakumar V. (2021) Experimental analysis on friction stir welding using flat-faced Pins in AA2024-T3 Plate. FME Transactions, 49: 78-86.
doi: 10.5937/fme2101078S. DOI: https://doi.org/10.5937/fme2101078S
Vijay SJ, Murugan N. (2010) Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite. Mater. Des., 31: 3585-3589. DOI: https://doi.org/10.1016/j.matdes.2010.01.018
Leon SJ, Bharathiraja G, Jayakumar V. (2020) Durability map for the friction stir welding tools with flat faced Pins. Int J of Integrated Engineering, 2(8): 83-96
doi: 10.30880/ijie.2020.12.08.008. DOI: https://doi.org/10.30880/ijie.2020.12.08.008
Gadakh VS, Kumar A. (2014) Friction stir welding window for AA6061-T6 aluminium alloy. Proc IMechE, Part B: J Engineering Manufacture, 228(9): 1172-1181. DOI: https://doi.org/10.1177/0954405413510289
Stephen Leon J, Bharathiraja G, Jayakumar V. (2020) Analytical and experimental investigations of optimum thermomechanical conditions to use tools with non-circular pin in friction stir welding. Int. J. Adv. Manuf. Technol., 107: 11-12.
doi: 10.1007/s00170-020-05341-7. DOI: https://doi.org/10.1007/s00170-020-05341-7
Shi L, Wu CS. (2017) Transient model of heat transfer and material flow at different stages of friction stir process. J. Manuf. Proc., 25: 323-339. DOI: https://doi.org/10.1016/j.jmapro.2016.11.008
Hamilton C, Dymek S, Sommers A. (2008) A thermal model of friction stir welding in aluminium alloys. Int J Mach Tools & Manuf., 48(10): 1120-1130. DOI: https://doi.org/10.1016/j.ijmachtools.2008.02.001
Schmidt H, Hattel J. (2005) Modelling heat flow around tool probe in friction stir welding. Sci Tech Weld Join, 10: 176-186. DOI: https://doi.org/10.1179/174329305X36070
Frigaard O, Grong O, Midling OT. (2001) A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans, 32(5): 1189-1200. DOI: https://doi.org/10.1007/s11661-001-0128-4
Nandan R, DebRoy T, Bhadeshia HKDH. (2008) Recent advances in friction-stir welding –Process, weldment structure and properties. Prog Mater Sci, 53(6): 980-1023. DOI: https://doi.org/10.1016/j.pmatsci.2008.05.001
Leon JS, Jayakumar V. (2020) Transient heat input model for friction stir welding using non-circular tool pin. FME Transactions, 48(1): 137-142. doi: 10.5937/fmet2001137L. DOI: https://doi.org/10.5937/fmet2001137L
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.