EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS, POWER CONSUMPTION, AND MATERIAL REMOVAL RATE OF ALUMINIUM 6065-SI-MWCNT METAL MATRIX COMPOSITE IN TURNING OPERATIONS

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i2.1640

Keywords:

MWCNT (Multi-Walled Carbon Nanotube), Power Consumption, Machining, Cutting force, CCD (Central Composite Design), RSM (Response Surface Methodology).

Abstract

Nanocomposites were prepared with Al-6065-Si and multi walled carbon nanotubes of 1 wt.% as reinforcement through the stir-casting method. Fabricated nanocomposites were machined on a lathe machine using a tungsten carbide tool. The study investigated the multi-objective optimization of the turning operation. Cutting velocity, feed, and depth of cut were considered for providing minimum Surface Roughness of the workpiece. Also, the power consumed by the lathe machine with maximum metal removal rate was examined by surface response methodology. The design of experiments was developed based on rotational central composite design. Analysis of variance was executed to investigate the adequacy and the suitable fit of the developed mathematical models. Multiple regression models were used to represent the relationship between the input and the desired output variables. The analysis indicates that the feed is the most influential factor that effects the surface roughness of the workpiece. Cutting speed and the depth of cut are two other important factors that proportionally influence the power consumed by the lathe tool as compared to the feed rate.

ABSTRAK: Komposit nano disediakan bersama Al-6065-Si dan karbon nanotiub berbilang dinding sebanyak 1 wt.% sebagai bahan penguat melalui kaedah kacauan-tuangan. Komposit nano yang terhasil melalui mesin pelarik ini menggunakan alat tungsten karbida. Kajian ini merupakan pengoptimuman pelbagai objektif operasi pusingan. Kelajuan potongan, suapan dan kedalaman potongan diambil kira sebagai pemberian minimum pada kekasaran permukaan bahan kerja. Tenaga yang digunakan bagi mesin pelarik dengan kadar maksimum penyingkiran logam diteliti melalui kaedah tindak balas permukaan. Rekaan eksperimen yang dibangunkan ini adalah berdasarkan rekaan komposit pusingan tengah. Analisis varian telah dijalankan bagi mengkaji kecukupan dan penyesuaian lengkap bagi model matematik yang dibangunkan. Model regresi berganda digunakan bagi menunjukkan hubungan antara input dan pembolehubah output yang dikehendaki. Analisis menunjukkan pemberian suapan merupakan faktor mempengaruhi keberkesanan kekasaran permukaan bahan kerja. Kelajuan pemotongan dan kedalaman potongan adalah dua faktor penting lain yang mempengaruhi kadar langsung ke atas tenaga yang digunakan oleh mesin pelarik dibandingkan kadar pemberian suapan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Esawai A, Morsi K. (2007) Dispersion of carbon nanotubes (CNTs) in aluminium powder Composites part-A Applied Science and Manufacturing, 38: 646-650. DOI: https://doi.org/10.1016/j.compositesa.2006.04.006

Iijima S. (1991) Helical microtubules of graphic carbon. Nature, 354: 56-58. DOI: https://doi.org/10.1038/354056a0

Bakshi SR, Lahiri D, Agarwal A. (2010) Carbon nanotube reinforced metal matrix composites - A review. International Materials Reviews, 55: 41-64. DOI: https://doi.org/10.1179/095066009X12572530170543

Liu ZY, Yu SJ, Xiao BL. (2012) Effect of ball milling time on mechanical properties of carbon nanotubes reinforced aluminium matrix composites. Composites part-A applied Zcience and Manufacturing, 43: 2161-2168. DOI: https://doi.org/10.1016/j.compositesa.2012.07.026

Baburaj E, Senthil P, Dhanapal P. (2018) Investigation on influence of machining parameters on high speed phase milling of hybrid (LM0-SiC-Fly Ash). Composite Int J Pure and Appl Math, 118(20): 901-906.

Stratford KN, Audy J. (1997) Indirect monitoring of machinability in carbon steels by measurement of cutting forces. J. Mater Processing Tech, 67(1-3): 150-156. DOI: https://doi.org/10.1016/S0924-0136(96)02835-X

Teti R. (2002) Machining of composite materials. CIRP Annals, 51(2): 611-634. DOI: https://doi.org/10.1016/S0007-8506(07)61703-X

Ranganath MS, Vipin RSM. (2014) Effect of cutting parameters on MRR and surface roughness in turning of Aluminium-6061. Int J Adv Res and Innov, 2(1): 32-39.

Parhad P, Likhite A, Bhatt J. (2015) The effect of cutting speed and depth of cut on surface roughness during machining of austempered ductile iron. Transactions of the Indian Institute of Metals, 68: 99-108. https://doi.org/10.1007/s12666-014-0439-y. DOI: https://doi.org/10.1007/s12666-014-0439-y

Thangarasu SK, Shankar S, Thomas AT, Sridhar G. (2018) Prediction of cutting force in turning Process-an experimental approach, IConAMMA-2017, IOP Conf. Series: Materials Science and Engineering, 310: 012119.

Patel MT, Deshpande VA. (2014) Optimization of machining parameters for turning different alloy steel using CNC-Review. Int J Innov Res Sci Eng Tech, 3(2): 2319-8753.

Puttaswamy SJ, Venkatagiriyappa RB. (2020) Investigation on influence of anionic

surfactant for homogenisation of MWCNT in Aluminium 6065 matrix. IIUM Engineering

Journal, 21(2). https://doi.org/10.31436/iiumej.v21i2.1317 DOI: https://doi.org/10.31436/iiumej.v21i2.1317

Thangarasu SK. (2018) Prediction of cutting force in turning process-an experimental approach. IOP Conference Series: Materials Science and Engineering, 310: 012119. DOI: https://doi.org/10.1088/1757-899X/310/1/012119

Samuel MK, Chandrasekaran C, Paarthasarathy B, Kamalakkannan SD. (2013) Prediction of surface roughness response in turning on Cu graphite MMC fabricated through stir-casting method. IJETAE, IESSN 3(3): 2250-2459.

Geo R, D’Cotha JS. (2014) Effect of turning parameters on power consumption in EN 24 alloy steel suing different cutting tools. Int J Eng Res Gen Sci, 2(6): 2091-2730.

Akcay H, Anagun AS. (2013) Multi response optimization application on a manufacturing factory. Mathematical and Computational Application, 18(3): 531-538. DOI: https://doi.org/10.3390/mca18030531

Kuttolamadom M, Hamzehlouia S, Mears L. (2010) Effect of machining feed on surface roughness in cutting 6061 aluminum. SAE Int J Mater Manuf, 3(1): 108-119. https://doi.org/10.4271/2010-01-0218. DOI: https://doi.org/10.4271/2010-01-0218

Richard Geo, Jose Sheril D’cotha (2014) Effect of Turning Parameters on Power Consumption in EN 24 Alloy Steel using Different Cutting Tools, International Journal of Engineering Research and General Science, Vol. 2, Issue 6, October-November, ISSN 2091-2730.

Singh BJ, Sodhi HS. (2014) Parametric optimisation of CNC turning for Al-7020 with RSM. Int J Operational Research, 20(2): 180-206. DOI: https://doi.org/10.1504/IJOR.2014.061769

Ramudu C, Sastry MNP. (2012) Analysis and optimization of turning process parameters using design of experiments. Int J Eng Res Appl, 2(6): 20-27.

Lakshminarayanan AK, Balasubramanian V. (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 19(1): 9-18. DOI: https://doi.org/10.1016/S1003-6326(08)60221-6

Downloads

Published

2021-07-04

How to Cite

Puttaswamy, S. J. ., & Bommanahalli Venkatagiriyappa, R. (2021). EFFECT OF MACHINING PARAMETERS ON SURFACE ROUGHNESS, POWER CONSUMPTION, AND MATERIAL REMOVAL RATE OF ALUMINIUM 6065-SI-MWCNT METAL MATRIX COMPOSITE IN TURNING OPERATIONS. IIUM Engineering Journal, 22(2), 283–293. https://doi.org/10.31436/iiumej.v22i2.1640

Issue

Section

Materials and Manufacturing Engineering