CHARACTERIZATION OF MORTAR WITH PENNISETUM PURPUREUM ASHES AS CEMENT REPLACEMENT MATERIAL
DOI:
https://doi.org/10.31436/iiumej.v22i2.1599Keywords:
Pennisetum purpureum ashes; PPA Mortar; Replacement dosage; Grinding time.Abstract
In this study, the properties of mortar such as standard consistency, setting time, compressive strength, and water absorption rate were investigated. The cement was replaced with Pennisetum purpureum ashes (PPA) in different particle sizes and dosages. PPA was produced in greyish-white ash with total reactive oxides ranging from 37% to 41.1%. Pennisetum purpureum grass (PPG) was burned with a controlled process at 350 °C for the first 3 hours and 600 °C for another 3 hours at a heating rate of 10 °C/min. Then, PPG was ground in three different grinding durations (1, 3, and 6 hours) producing ashes with particle sizes of 10.58 µm, 10.25 µm, and 9.30 µm, respectively. The physical, chemical, and microstructural properties of PPA were evaluated through several tests; particle size analysis, X-ray diffraction analysis, loss on ignition, and chemical composition. Results indicated that PPA is more suitable for use as filling material as a substitute for cement than pozzolanic material as its reactive oxides are less than 50%. The 15% 6H-PPA at 28 days was found to be the optimum PPA replacement dosage and grinding time with cement as it achieved the highest strength and lower water absorption rate among all samples at 7 and 28 days.
ABSTRAK: Kajian ini berkenaan sifat mortar seperti konsistensi standard, masa penyediaan, kekuatan menyeluruh, dan kadar penyerapan air. Simen ditukar dengan abu Pennisetum purpureum (PPA) dalam saiz partikel dan sukatan berbeza. PPA pula dihasilkan melalui habuk putih-kekelabuan dengan total reaktif oksida dengan julat purata 37% ke 41.1%. Rumput Pennisetum purpureum (PPG) dibakar dengan proses kawalan pada 350 °C selama 3 jam pertama dan 600 °C pada 3 jam berikutnya pada kadar pemanasan 10 °C/min. Kemudian, PPG dikisar dalam tiga tempoh kisaran berbeza (1, 3, dan 6 jam) menghasilkan abu dengan saiz partikel 10.58 µm, 10.25 µm, dan 9.30 µm, masing-masing. Fizikal, larutan kimia dan sifat struktur mikro PPA telah dikaji melalui pelbagai ujian; analisis saiz partikel, analisis pembelauan X-ray, kehilangan semasa penyalaan dan kandungan kimia. Dapatan kajian menunjukkan PPA adalah lebih sesuai digunakan sebagai material pengisian ganti kepada simen berbanding material pozzolanik kerana reaktif oksida adalah kurang daripada 50%. PPA adalah maksimum pada 15% 6H-PPA selama 28 hari, didapati lebih sesuai sebagai dos pengganti dan masa kisaran bersama simen, kerana kekuatan menyeluruh adalah paling tinggi dan kadar penyerapan air paling kurang antara semua sampel pada 7 dan 28 hari.
Downloads
Metrics
References
Ghiasvand E, Ramezanianpour A. (2017) Effect of grinding method and particle size distribution on long term properties of binary and ternary cements. Construction and Building Materials, 134: 75-82. https://doi.org/10.1016/j.conbuildmat.2016.12.122 DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.122
Cordeiro GC, Kurtis KE. (2017) Effect of mechanical processing on sugar cane bagasse ash pozzolanicity. Cement and Concrete Research, 97: 41-49. https://doi.org/10.1016/j.cemconres.2017.03.008 DOI: https://doi.org/10.1016/j.cemconres.2017.03.008
Ambedkar B, Alex J, Dhanalakshmi J. (2017) Enhancement of mechanical properties and durability of the cement concrete by RHA as cement replacement: Experiments and modeling. Construction and Building Materials, 148: 167-175. https://doi.org/10.1016/j.conbuildmat.2017.05.022 DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.022
Thomas BS, Kumar S, Arel HS. (2017) Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material–A review. Renewable and Sustainable Energy Reviews, 80: 550-561. https://doi.org/10.1016/j.rser.2017.05.128 DOI: https://doi.org/10.1016/j.rser.2017.05.128
Adesanya DA, Raheem AA. (2009) Development of corn cob ash blended cement. Construction and Building Materials. 23(1): 347-352. https://doi.org/10.1016/j.conbuildmat.2007.11.013 DOI: https://doi.org/10.1016/j.conbuildmat.2007.11.013
Mohammed I, Abakr Y, Kabir F, Yusup S. (2015) Effect of aqueous pretreatment on pyrolysis characteristics of napier grass. Journal of Engineering Science and Technology, 10(11): 1487-1496. http://jestec.taylors.edu.my/Vol%2010%20Issue%2011
Ghani WWAK, Salleh MAM, Adam SN, Shafri HM, Shaharum SN, Lim KL, Tapia JF. (2019) Sustainable bio-economy that delivers the environment-food-energy-water nexus objectives: the current status in Malaysia. Food and Bioproducts Processing, 118: 167-186. https://doi.org/10.1016/j.fbp.2019.09.002 DOI: https://doi.org/10.1016/j.fbp.2019.09.002
Cordeiro GC, Sales CP. (2015) Pozzolanic activity of elephant grass ash and its influence on the mechanical properties of concrete. Cement and Concrete Composites, 55: 331-336. https://doi.org/10.1016/j.cemconcomp.2014.09.019 DOI: https://doi.org/10.1016/j.cemconcomp.2014.09.019
Saruchera L, Mupa M, Muchanyereyi-Mukuratirwa N, Witzleben S. (2018) A study on the pozzolanic properties of Pennisetum Purpureum ash. Journal of Interdisciplinary Academic Research, 1: 1-10. https://doi.org/10.32476/b9691748-2ac0-4d2fab85-6660b03aeac5 DOI: https://doi.org/10.32476/b9691748-2ac0-4d2f-ab85-6660b03aeac5
?
Nakanishi EY, Frías M, Martínez-Ramírez S, Santos SF, Rodrigues MS, Rodríguez O, Savastano Jr H. (2014) Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes. Construction and Building Materials, 73: 391-398. https://doi.org/10.1016/j.conbuildmat.2014.09.078 DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.078
Cordeiro GC, Sales CP. (2016) Influence of calcining temperature on the pozzolanic characteristics of elephant grass ash. Cement and Concrete Composites, 73: 98-104. https://doi.org/10.1016/j.cemconcomp.2016.07.008 DOI: https://doi.org/10.1016/j.cemconcomp.2016.07.008
Nakanishi EY, Frías M, Santos SF, Rodrigues MS, de la Villa RV, Rodriguez O, Junior HS. (2016) Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements. Journal of Cleaner Production, 116: 236-243. https://doi.org/10.1016/j.jclepro.2015.12.113 DOI: https://doi.org/10.1016/j.jclepro.2015.12.113
Ramadhansyah PJ, Bakar BA, Azmi MM, Ibrahim MW. (2011) Engineering properties of normal concrete grade 40 containing Rice husk ash at different grinding times. International Journal of Technology, 2(1): 10-19.
EN 197-1 (2000) Cement: Part 1. Compositions and conformity criteria for common cements.
Abu Bakar BH, Ramadhansyah PJ, Megat Azmi MJ. (2011) Effect of rice husk ash fineness on the chemical and physical properties of concrete. Magazine of Concrete Research, 63(5): 313-320. https://doi.org/10.1680/macr.10.00019 DOI: https://doi.org/10.1680/macr.10.00019
ASTM C114 (2007) Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International. West Conshohocken, PA.
ASTM Designation C187-04 (2004) Standard test method for normal consistency of hydraulic cement. West Conshohocken, PA.
ASTM C191-08 (2008) Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle, West Conshohocken, PA, USA.
ASTM C109-08 (2008) Standard test method for compressive strength of hydraulic cement mortars. ASTM International, West Conshohocken, PA.
ASTM C1403-14 (2014) Standard Test Method for Rate of Water Absorption of Masonry Mortars, ASTM International, West Conshohocken, PA.
ASTM C618 (2008) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete Cement; Lime; Gypsum, Annual Book of ASTM Standards, vol. 04.01, American Society for Testing and Materials, Philadelphia, PA.
Sathawane SH, Vairagade VS, Kene KS. (2013) Combine effect of rice husk ash and fly ash on concrete by 30% cement replacement. Procedia Engineering, 51: 35-44. https://doi.org/10.1016/j.proeng.2013.01.009 DOI: https://doi.org/10.1016/j.proeng.2013.01.009
Venkatanarayanan HK, Rangaraju PR. (2015) Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and concrete composites, 55: 348-363. https://doi.org/10.1016/j.cemconcomp.2014.09.021 DOI: https://doi.org/10.1016/j.cemconcomp.2014.09.021
Rai S, Tiwari S. (2018) Nano silica in cement hydration. Materials Today: Proceedings, India, 5(3): 9196-9202. https://doi.org/10.1016/j.matpr.2017.10.044 DOI: https://doi.org/10.1016/j.matpr.2017.10.044
Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. (2018) A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181: 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.075
Jaturapitakkul C, Tangpagasit J, Songmue S, Kiattikomol K. (2011) Filler effect and pozzolanic reaction of ground palm oil fuel ash. Construction and Building Materials, 25(11): 4287-4293. https://doi.org/10.1016/j.conbuildmat.2011.04.073 DOI: https://doi.org/10.1016/j.conbuildmat.2011.04.073
Altwair NM, Johari MAM, Hashim SFS. (2011) Strength activity index and microstructural characteristics of treated palm oil fuel ash. International Journal of Civil & Environmental Engineering, 11: 100-107
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.