• C. S. Suhas Kowshik Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India 576104
  • Nanjangud Mohan Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India 576104
  • Nithesh Naik Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India 576104
  • Manjunath Shettar Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India 576104
  • Ritesh Bhat Manipal Academy of Higher Education
  • Shivaksh Rohatgi Department of Propulsion Aeronautics and Space Engineering, École Centrale de Lyon, Écully, France 69134



Mechanical property, Nanocomposites, Natural fibres, Polymers, ANOVA


This study aims at investigating the effect of water ageing on the durability of cellulose fibre reinforced polymer layered silicate nanocomposite. The material used comprises cellulose fibres from pinewood as reinforcement and high-density polyethene (HDPE) coupled with nanoclay as matrix phase. The prepared material is subjected to tap water ageing for 21 days. The durability is quantified by Barcol hardness for the material and measured at an interval period of 7 days. The obtained results indicate a reduction of hardness by 5.24, 13.17, and 16.60% in 7, 14, and 21 days aged nanocomposites. Besides, the one-way ANOVA test shows that the immersion time for the composite has a significant effect on the durability of the material with an R2 value of 99.96% tested at 95% confidence interval. The concluding remarks are validated using the results obtained for thickness swelling using the Fourier analysis. The work also presents a regression equation with high degree of accuracy, capable of estimating the Barcol hardness value for a given immersion time.

ABSTRAK: Kajian ini bertujuan untuk mengkaji kesan penuaan air terhadap ketahanan nanokomposit silikat berlapis polimer bertetulang serat selulosa. Bahan yang digunakan terdiri daripada serat selulosa dari kayu pina sebagai tetulang dan polietena berketumpatan tinggi (HDPE) ditambah dengan nanoclay sebagai fasa matriks. Bahan yang disediakan mengalami penuaan air paip selama 21 hari. Ketahanan diukur dengan kekerasan bahan Barcol dan diukur pada selang waktu 7 hari. Hasil yang diperoleh menunjukkan penurunan kekerasan sebanyak 4.74, 8.88 dan 18.90% dalam nanokomposit usia 7, 14 dan 21 hari. Selain itu, analisis satu arah ujian varians menunjukkan bahawa masa rendaman komposit mempunyai pengaruh yang signifikan terhadap ketahanan bahan dengan nilai R2 99.96% yang diuji pada selang keyakinan 95%. Ucapan penutup disahkan menggunakan hasil yang diperoleh untuk pembengkakan ketebalan menggunakan analisis Fourier. Karya ini juga menyajikan persamaan regresi dengan tahap ketepatan yang tinggi, yang dapat menganggarkan nilai kekerasan Barcol untuk masa rendaman tertentu.


Download data is not yet available.


Metrics Loading ...


Bafna A, Beaucage G, Mirabella F, Mehta S. (2003) 3D hierarchical orientation in polymer-clay nanocomposite films. Polymer, 44(4): 1103-1115. doi: 10.1016/S0032-3861(02)00833-9.

Osman MA, Rupp JEP, Suter UW. (2005) Tensile properties of polyethylene-layered silicate nanocomposites. Polymer, 46(5): 1653-1660. doi: 10.1016/j.polymer.2004.11.112.

Tanniru M, Yuan Q, Misra RDK. (2006) On significant retention of impact strength in clay-reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47(6): 2133-2146. doi: 10.1016/j.polymer.2006.01.063.

Jamal NA. (2010) A Linear Relationship between the Mechanical, Thermal and Gas Barrier Properties of MAPE Modified Rubber Toughened Nanocomposites. IIUM Engineering Journal, 11(2): 225-239. doi: 10.31436/iiumej.v11i2.114.

Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D. (2009) Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. Journal of Applied Polymer Science, 14(3): 1606-1618. doi: 10.1002/app.30750.

Faruk O, Matuana LM. (2008) Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Composites Science and Technology, 68(9): 2073-2077. doi: 10.1016/j.compscitech.2008.03.004.

Delhom CD, White-Ghoorahoo LA, Pang SS. (2010) Development and characterisation of cellulose/clay nanocomposites. Composites Part B: Engineering, 41(6): 475-481. doi: 10.1016/j.compositesb.2009.10.007.

Sheshmani S, Ashori A, Hamzeh Y. (2010) Physical properties of polyethylene-wood fibre-clay nanocomposites. Journal of Applied Polymer Science, 118(6): 3255-3259. doi: 10.1002/app.32623.

Deka BK, Maji TK. (2011) Study on the properties of nanocomposite based on high density polyethylene, polypropylene, polyvinyl chloride and wood. Composites Part A: Applied Science and Manufacturing, 42(6): 6860693. doi: 10.1016/j.compositesa.2011.02.009.

Hossen MF, Hamdan S, Rahman MR, Rahman MM, Liew FK, Lai JC. (2015) Effect of fibre treatment and nanoclay on the tensile properties of jute fibre reinforced polyethylene/clay nanocomposites. Fibers and Polymers, 16(2): 479-485. doi: 10.1007/s12221-015-0479-x.

Eshraghi A, Khademieslam H, Ghasemi I. (2016) Effect of weathering on physical and mechanical properties of hybrid nanocomposite based on polyethylene, woodflour and nanoclay. Maderas: Ciencia y Tecnologia, 18(4): 617-626. doi: 10.4067/S0718-221X2016005000054.

Hossen MF, Hamdan S, Rahman MR, Islam MS, Liew FK, Lai JC, Rahman MM. (2017) Improved thermal properties of jute fibre-reinforced polyethylene nanocomposites. Polymer Composites, 38(7): 1266-1272. doi: 10.1002/pc.23691.

Abd El-Fattah A, Abd ElKader E. (2018) Influence of different clays on the mechanical, thermal, and water absorption properties of recycled high-density polyethylene/wood flour hybrid composites. Journal of Composite Materials, 52(9): 1215-1226. doi: 10.1177/0021998317723180.

Zhu B, Wang X, Zeng Q, Wang P, Wang Y, Liu C, Shen, C. (2019) Enhanced mechanical properties of biodegradable poly(?-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay. Composites Communications, 13: 70-74.

doi: 10.1016/j.coco.2019.03.002.

Hossen MF, Asraf MA, E-Zahan MK, Haque MM, Zamir R, Zakaria RM. (2020) Optimisation of Nanoclay Loading on the Thermo-mechanical Behavior of Chemically Treated Jute Polyethylene Nanocomposites. Journal of Materials Science Research and Reviews, 5(3): 1-12.

Faraji G, Kim HS, Kashi HT. (2018) Mechanical Properties of Ultrafine-Grained and Nanostructured Metals. Severe Plastic Deformation. Elsevier; pp. 223–257.

Di Gianfrancesco A. (2017) Technologies for chemical analyses, microstructural and inspection investigations. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants. Elsevier; pp. 197–245.

Stachowiak GW, Batchelor AW, Stachowiak GB. (2004) Simulation of wear and friction. Tribology Series, 44: 13-23.

Adhikary KB, Pang S, Staiger MP. (2008) Long-term moisture absorption and thickness swelling behaviour of recycled thermoplastics reinforced with Pinus radiata sawdust. Chemical Engineering Journal, 142(2): 190-198. doi: 10.1016/j.cej.2007.11.024.

Atiqah A, Jawaid M, Ishak MR, Sapuan SM. (2017) Moisture Absorption and Thickness Swelling Behaviour of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane. Procedia Engineering, 184: 581-586, 2017, doi: 10.1016/j.proeng.2017.04.142.

Hoefsloot HCJ, Vis DJ, Westerhuis JA, Smilde AK, Jansen JJ. (2009) Multiset Data Analysis: ANOVA Simultaneous Component Analysis and Related Methods. Comprehensive Chemometrics. Volume 2. Elsevier; pp. 453–472.

Christensen R. (2001) Analysis of Variance and Generalised Linear Models. International Encyclopedia of the Social & Behavioral Sciences. Elsevier; pp. 473–480.




How to Cite

Kowshik, C. S. S. ., Mohan, N. ., Naik, N., Shettar, M. ., Bhat, R., & Rohatgi, S. . (2020). THE DURABILITY OF HYGRO-IMMERSION AGED CELLULOSE FIBRE REINFORCED POLYMER LAYERED SILICATE NANOCOMPOSITES. IIUM Engineering Journal, 22(1), 259–268.



Materials and Manufacturing Engineering