Wind energy, Low speed generator, External guide surface, The operating efficiency of a vertical axis wind turbine, Vertical axis wind turbine modeling


This article presents theoretical and experimental studies of an improved vertical axis wind power device that generates electricity in areas with an average wind speed of 3.5-4.5 m/s. An algorithm has been developed for determining the geometrically optimal dimensions of the outer guiding surfaces to improve the efficiency of the device at low wind speeds. The device uses an AFPMG generator with opposite rotation of the stator and rotor. Matlab/Simulink and Solidworks were used to develop a mathematical and physical model of the wind power device. According to the results of the study, it was found that the developed wind power device can reach a rated power of 700 W at a wind speed of 8 m/s. The use of the device in areas with low wind speed is based on the possibility of increasing the efficiency of work by 5-10% at an average wind speed lower than that of other types of wind power devices.

ABSTRAK: Artikel ini memaparkan kajian teori dan eksperimen berkenaan alat kuasa angin paksi menegak yang diperbaharui dan menghasilkan tenaga elektrik di kawasan kelajuan angin berpurata 3.5-4.5 m/s. Algoritma telah dibangunkan bagi menentukan dimensi optimum geometri permukaan berpandu luar dalam meningkatkan kecekapan peranti pada kelajuan angin yang kurang. Peranti ini menggunakan penjana AFPMG dengan putaran stator dan rotor yang berlawanan. Matlab/Simulink dan Solidworks digunakan bagi menghasilkan model matematik dan fizikal peranti tenaga angin. Berdasarkan dapatan kajian, didapati bahawa alat tenaga angin yang dibangunkan ini dapat mencapai daya kuasa sebanyak 700 W pada kecepatan angin 8 m/s. Penggunaan alat ini di kawasan kurang kelajuan angin berkemungkinan meningkatkan efisiensi purata kerja sebanyak 5-10% pada kelajuan angin rendah, iaitu lebih rendah daripada segala jenis peranti tenaga angin lain.


Download data is not yet available.


Metrics Loading ...


Sadullaev NN, Safarov AB, Nematov ShN, Mamedov RA. (2019) Research on facilities of power supply of small power capability consumers of Bukhara region by using wind and solar energy. International Journal of Innovative Technology and Exploring Engineering, 8(9S2): 229-235. DOI:

Norhafana M, Ismail AF, Majid ZAA. (2015) Performance evaluation of solar collectors using a solar simulator. IIUM Engineering Journal, 16(2): 79-90. DOI:

Karim MA, Amin ZM. (2015) Mathematical modelling and performance analysis of different solar air collectors. IIUM Engineering Journal, 16(2): 43-55. DOI:

Izanlo A, Gholamian A, Kazemi MV. (2017) Direct power control of a DFIG based wind turbins under unbalanced grid voltage without rotor position sensor. IIUM Engineering Journal, 18(1): 57-71. DOI:

Jami MS, Mel M, Mohd Ariff AR, Abdulazeez QM. (2018) Investigation of bioflocculant as renewable dewatering aid in sludge treatment. IIUM Engineering Journal, 19(1): 15-23. DOI:

Wind Turbine Market Growth Statistics []

Sadullaev NN, Safarov AB, Nematov ShN, Mamedov RA. (2019) Statistical analysis of wind energy potential in Uzbekistan’s Bukhara region using Weibull distribution. Applied Solar Energy, 55(2): 126-132. DOI:

Sadullayev NN, Safarov AB, Nematov ShN, Mamedov RA, Abdujabarov AB. (2020) Opportunities and prospects for the using renewable energy sources in Bukhara region. Applied Solar Energy, 56(4): 291-301. DOI:

Sadullaev NN, Safarov AB, Mamedov RA, Kodirov D. (2020) Assessment of wind and hydropower potential of Bukhara region. IOP Conference Series: Earth and Environmental Science: 14-16 October 2020 DOI:

Solomin EV. (2013) Methodological foundations for the development and creation of vertical-axialwind turbines for the agro-industrial complex of Russia. PhD thesis. South Ural State University, Electrical Engineering and Renewable Energy Department.

Xiongfei P. (2011) Dual power wind turbine. China. CN102287334A.

Zha G, Dano B. (2013) Vertical axis wind turbine. USA. US20130115069A1.

Pezaris CD. (2011) Omnidirectional vertical-axis wind turbine. USA. US20110033288A1.

Yadav YK, (2016) A Savonius wind turbine with electric generator: Model and test. PhD thesis. Clemson University, Mechanical Engineering Department.

Kaliyev V. (2015) Axial Flux Permanent Magnet Coreless Machine. PhD thesis. University of Southern Queensland, Engineering Sciences Department.

Taran N. (2019) Optimum Design of Axial Flux PM Machines based on Electromagnetic 3D FEA. PhD thesis. University of Kentucky, Electrical and Computer Engineering.

Lim YC, Chong WT, Hsiao FB. (2013) Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane. Procedia Engineering, 67: 59-69 DOI:

Bezrukikh PP. (2010) Wind power. (Reference and methodological manual). Moscow, "Energia", 320 p.

Lin SY, Lin YY, Bai CJ, Wang WC. (2016) Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics. Renewable Energy, 99: 654-662. DOI:

Ackermann T, Söder L. (2000) Wind energy technology and current status: a review. Renewable and Sustainable Energy Reviews, 4(4): 315-374. DOI:

Bronstein MG. (2011) Harnessing rivers of wind: A technology and policy assessment of high altitude wind power in the U.S. Technological Forecasting and Social Change, 78: 736-746. DOI:

Juangsa FB, Budiman BA, Aziz M, Soelaiman TA. (2017) Design of an airborne vertical axis wind turbine for low electrical power demands. International Journal of Energy and Environmental Engineering, 8:293-301. DOI:

Blevins RD. (2003) Applied Fluid Dynamic Handbook. Florida, Krieger, 558 ?

Ahrens U, Diehl M, Schmehl R. (eds.) (2013) Airborne wind energy. Berlin. Springer, 611 p DOI:

Obukhov SG, Sarsikeev EZh. (2012) Low power wind turbine mathematical model in Matlab Simulink. International Scientific Journal for Alternative Energy and Ecology, 2: 42-48

Komass T, Sniders A. (2014) Design and verification of vertical axis wind turbine simulation model. 13th international scientific conference engineering for rural development proceedings; 29-30 May 2014; Engineering for rural development. Edited by L. Malinovska, V. Osadcuks pp. 335-340

Chong WT, Fazlizana A, Poh SC, Pan KC, Hew WP, Hsiao FB. (2013) The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Applied Energy, 112: 601-609. DOI:

Nikbakhsh A, Izadfar H, Alinejad Beromi,Y. (2017) Design and optimization of permanent magnet synchronous generator for use in hydrodynamic renewable energy by applying ACO and FEA. IIUM Engineering Journal, 18(2): 158-176. DOI:

Wang W, Wang W, Mi H, Mao L, Zhang G, Liu H, Wen Y. (2018) Study and optimal design of a direct-driven stator coreless axial flux permanent magnet synchronous generator with improved dynamic performance. Energies. Suppl 11:1-22. DOI:

Gieras JF, Wang R-J, Kamper MJ. (2004) Axial flux permanent magnet brushless machines. Kluwer Academic Publishers, Dordrecht

Minaz MR, Çelebi M. (2017) Design and analysis of a new axial flux coreless PMSG with three rotors and double stators. Results in Physics, 7: 183-188. DOI:




How to Cite




Electrical, Computer and Communications Engineering