INFLUENCE OF LIGHT ABSORPTION PROFILE ON THE PERFORMANCE OF ORGANIC PHOTOVOLTAICS
DOI:
https://doi.org/10.31436/iiumej.v22i2.1559Keywords:
Carrier mobility, Fill factor, Open-circuit voltage, Power conversion efficiency, Short-circuit currentAbstract
We investigate how an enhanced light absorption at a specific position inside the active layer affects the performance of organic photovoltaic cells (OPVs), namely the short-circuit current density ( ), the open-circuit voltage ( ), the fill factor (FF), and the power conversion efficiency (PCE). The performance is calculated using an updated version of a previously published analytical current-voltage model for OPVs, where the updated model allows the light absorption profile to be described by any functions provided that analytical solutions can be produced. We find that the light absorption profile affects the performance through the drift current. When the mobility imbalance is not very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is less than about ), the PCE is maximized when the light absorption is concentrated at the center of the active layer. When the mobility imbalance is very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is more than approximately ), the PCE is maximized when the light absorption is concentrated near the electrode collecting the slower carrier type. Therefore, it is important to ensure that the light absorption profile is properly tuned so that the performance of OPVs is maximized. Moreover, any efforts that we make to improve the performance should not lead to a light absorption profile that would actually impair the overall performance.
ABSTRAK: Kajian ini menilai bagaimana penyerapan cahaya yang tinggi pada bahagian tertentu lapisan aktif mempengaruhi prestasi sel fotovoltaik organik (OPV), iaitu ketumpatan arus litar pintas (Jsc), voltan litar terbuka (Voc), faktor pengisian (FF), dan kecekapan penukaran kuasa (PCE). Prestasi dikira mengguna pakai model terkini yang diperbaharui dari model asal analitikal OPV voltan-arus, di mana model ini membenarkan mana-mana profil penyerapan cahaya digunakan asalkan penyelesaian analitikal terhasil. Dapatan kajian mendapati profil penyerapan cahaya mempengaruhi prestasi berdasarkan arus hanyut. Apabila ketidakseimbangan pergerakan caj tidak begitu tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah kurang daripada 103), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada tengah lapisan aktif. Apabila ketidakseimbangan pergerakan caj sangat tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah lebih daripada 104), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada elektrod yang mengutip pembawa caj perlahan. Oleh itu, kedudukan talaan profil penyerapan cahaya yang tepat adalah sangat penting bagi menentukan prestasi OPV dimaksimumkan. Tambahan, apa sahaja usaha penambahbaikan prestasi seharusnya tidak menyebabkan pengurangan keseluruhan prestasi profil penyerapan cahaya.
Downloads
Metrics
References
Scharber MC, Sariciftci NS. (2013) Efficiency of bulk-heterojunction organic solar cells. Progress in Polymer Science, 38(12): 1929-1940. doi: 10.1016/j/progpolymsci.2013.05.001. DOI: https://doi.org/10.1016/j.progpolymsci.2013.05.001
Park Sungjun, Heo SW, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. (2018) Self-powered ultraflexible electronics via nano-grating-patterned organic photovoltaics. Nature, 561(7724): 516-521.
doi: 10.1038/s41586-018-0536-x. DOI: https://doi.org/10.1038/s41586-018-0536-x
Teng N, Yang S, Chen F. (2018) Plasmonic - Enhanced organic photovoltaic devices for low-power light applications. IEEE Journal of Photovoltaic, 8(3): 752-756.
doi: 10.1109/JPHOTOV.2018.2797975. DOI: https://doi.org/10.1109/JPHOTOV.2018.2797975
Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. (2016) Solar cell efficiency tables. Progress in Photovoltaics, 24(7): 905–913. doi: 10.1002/pip.2788. DOI: https://doi.org/10.1002/pip.2788
Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H, Cao Y, Chen Y. (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 361(6407): 1094-1098. doi: 10.1126/science.aat2612. DOI: https://doi.org/10.1126/science.aat2612
Mandoc MM, Koster LJA, Blom PWM. (2007) Optimum charge carrier mobility in organic solar cells. Applied Physics Letter, 90(13): 133504. doi: 10.1063/1.2711534. DOI: https://doi.org/10.1063/1.2711534
Inche Ibrahim ML, Ahmad Z, Sulaiman K, Muniandy SV. (2014) Combined influence of carrier mobility and dielectric constant on the performance of organic bulk heterojunction solar cells. AIP Advance, 4(5): 057133. doi: 10.1063/1.4881080. DOI: https://doi.org/10.1063/1.4881080
Lee JJ, Lee SH, Kim FS, Choi HH, Kim JH. (2015) Simultaneous enhancement of the efficiency and stability of organic solar cells using PEDOT:PSS grafted with a PEGME buffer layer. Organic Electronics, 26: 191-199. doi: 10.1016/j.orgel.2015.07.022. DOI: https://doi.org/10.1016/j.orgel.2015.07.022
Chen A, Zhu K, Shao Q, Ji Z. (2016) Understanding the effects of TCO work function on the performance of organic solar cells by numerical simulation. Semiconductor Science and Technology, 31(6): 065025. doi: 10.1088/0268-1242/31/6/065025. DOI: https://doi.org/10.1088/0268-1242/31/6/065025
Koster LJA, Shaheen SE, Hummelen JC. (2012) Pathways to a new efficiency regime for organic solar cells. Advanced Energy Materials, 2(10): 1246-1253. DOI: https://doi.org/10.1002/aenm.201200103
doi: 10.1002/aen.201200103.
Inche Ibrahim ML, Hassan HA. (2019) Influence of active layer thickness on the performance of organic photovoltaics with light trapping. IEEE Transaction Electron Devices, 66(7): 3124-3128. doi: 10.1109/TED.2019.2917594. DOI: https://doi.org/10.1109/TED.2019.2917594
Lenes M, Koster LJA., Mihailetchi VD, Blom PWM. (2006) Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells. Applied Physics Letter, 88(24): 243502. doi: 10.1063/1.2211189. DOI: https://doi.org/10.1063/1.2211189
Fallahpour AH, Gagliardi A, Gentilini D, Zampetti A, Santoni F, Auf Der Maur M, Carlo AD. (2014) Optoelectronic simulation and thickness optimization of energetically disordered organic solar cells. Journal Computational Electronics, 13(4): 933-942.
doi: 10.1007/s10825-014-0611-y. DOI: https://doi.org/10.1007/s10825-014-0611-y
Mescher J, Christ N, Kettlitz S, Colsmann A, Lemmer U. (2012) Influence of the spatial photocarrier generation profile on the performance of organic solar cells. Applied Physics Letters, 101(7): 073301. doi: 10.1063/1.4745510. DOI: https://doi.org/10.1063/1.4745601
Tress W, Merten A, Furno M, Hein M, Leo K, Riede M. (2013) Correlation of absorption profile and fill factor in organic solar cells: The role of mobility imbalance. Advanced Energy Materials, 3(5): 631-638. doi: 10.1002/aenm.201200835. DOI: https://doi.org/10.1002/aenm.201200835
Islam M, Wahid S, Chowdhury M, Hakim F, Alam M. (2017) Effect of spatial distribution of generation rate on bulk heterojunction organic solar cell performance: A novel semi-analytical approach. Organic Electronics, 46(7): 226-241. doi: 10.1016/j.orgel.2017.04.021. DOI: https://doi.org/10.1016/j.orgel.2017.04.021
Gan Q, Bartoli FJ, Kafafi ZH. (2013) Plasmonic-enhanced organic photovoltaics: breaking the 10% efficiency barrier. Advanced Materials, 25(17): 2385-2396.
doi: 10.1002/adma.201203323. DOI: https://doi.org/10.1002/adma.201203323
Inche Ibrahim ML. (2018) An analytical model for organic solar cells incorporating non-geminate monomolecular and bimolecular recombinations. Semiconductor Science and Technology, 33(12): 125005. doi: 10.1088/1361-6641/aadf72. DOI: https://doi.org/10.1088/1361-6641/aadf72
Inche Ibrahim ML. (2017) Dissociation of charge-transfer states at donor–acceptor interfaces of organic heterojunctions. Journal of Physics D: Applied Physics, 50(6): 065103.
doi: 10.1088/1361-6463/50/6/065103. DOI: https://doi.org/10.1088/1361-6463/50/6/065103
Braun CL. (1984) Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. The Journal Chemical Physics, 80(9): 4157-4161. doi: 10.1063/1.447243. DOI: https://doi.org/10.1063/1.447243
Kniepert J, Lange I, van der Kaap NJ, Koster LJA, Neher D. (2014) A conclusive view on charge generation, recombination, and extraction in as?prepared and annealed P3HT:PCBM blends: Combined experimental and simulation work. Advanced Energy Materials, 4(7): 1301401. doi: 10.1002/aenm.201301401. DOI: https://doi.org/10.1002/aenm.201301401
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.