Combustion, Internal combustion engine, Ethanol, Multizone model


This research is aimed at investigating the effect of using ethanol (E100) in multi-zone model analysis consisting of multi-combustion chamber zoning cases. The first case considered is a three-zone model that has an unburned zone, burned zone, and transitory zone. The second case model is also three-zone, consisting of an unburned zone and two partitioned burned zones. The burned zone was imagined partitioned into burned zone-1 and burned zone-2 under uneven fuel distribution having different equivalent ratios. The third case is a four-zone model including two regions of burned zone, an unburned zone and a transitory zone, which is unburned burned zone containing a mixture of unburned and burned gases. Arbitrary constants for each of the unburned (CC1) and burned (CC2) Zone leakages in the unburned burned Zone are 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 and 0.5. The Mass Fraction Burned (MFB) for zone-1, x1 and burned zone-2, x2 are computed using Partitioned Burnt Zones Ratios (PBZR) of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 and 8:2. Two equivalent ratios, one for each fuel MFB (?1, ?2), (0.8, 0.6) and (0.6, 0.8) are analyzed using fuel blends of varying percentage. A comparison of values of the three zoning cases is done using peak values from the three-zone models to evaluate the four-zone model. The model was compared with a spark ignition engine (SIE) operating with a premium motor spirit (PMS) serving as baseline. The engine operating conditions were set at an engine speed of 2000 rpm, -35bTDC ignition time, and burn duration at 60 oC. The indicated mean effective pressure (IMEP), thermal efficiency (?), cylinder pressure and emission fraction from the developed models and those of two-zone analysis obtained agreed with literature values. The result showed it is undesirable to have a high volume of burned charge as infiltrate. The three-zone segmented model predicted the highest engine thermal efficiency and peak pressure at mass burn ratio of 7:3. A general reduction in N2 emission was observed for the three-zone transitional and four-zone models.

ABSTRAK: Kajian ini menilai kesan etanol (E100) dalam analisis model zon-berbilang yang terdapat pada masalah pengezonan kebuk pembakaran-berbilang. Kes pertama yang diambil kira adalah model tiga-zon yang mempunyai zon tidak terbakar, zon terbakar dan zon peralihan. Model kedua merupakan juga tiga-zon yang terdiri daripada zon tidak-terbakar dan dua zon bahagian yang terbakar. Zon yang terbakar dibahagikan kepada zon-1 terbakar dan zon-2 terbakar di bawah kebakaran tidak sekata yang mempunyai nisbah berlainan. Kes ketiga adalah model zon-keempat termasuk dua kawasan zon terbakar, zon tidak-terbakar dan zon peralihan iaitu zon terbakar tidak-terbakar di mana ia adalah campuran gas terbakar dan tidak-terbakar. Tetapan sebarangan bagi setiap zon kebocoran tidak-terbakar (CC1) dan terbakar (CC2) dalam zon terbakar tidak-terbakar adalah 0.00025, 0.0005, 0.001, 0.002, 0.005, 0.1 dan 0.5. Pecahan Jisim Terbakar (MFB) bagi zon-1, x1 dan zon-2 terbakar, x2 dikira menggunakan Nisbah Zon Bahagian Terbakar (PBZR) sebanyak 2:8, 3:7, 4:6, 5:5, 6:4, 7:3 dan 8:2. Nisbah dua persamaan, setiap satu bahan api MFB adalah (?1, ?2), (0.8, 0.6) dan (0.6, 0.8) dan diuji menggunakan pelbagai peratus bahan api campuran. Nilai perbandingan bagi tiga kes zon dibuat menggunakan nilai puncak dari model tiga-zon bagi menilai model empat-zon. Model ini dibandingkan dengan enjin cucuhan bunga api (SIE) beroperasi dengan motor alkohol premium (PMS) sebagai garis asas. Keadaan operasi enjin adalah dihadkan pada 2000 rpm kelajuan enjin, masa pencucuhan -35bTDC dan tempoh pembakaran pada 60 oC. Tekanan berkesan min tertunjuk (IMEP), kecekapan haba tertunjuk (?), tekanan silinder dan pecahan pengeluaran dari model yang dibangunkan dan analisis dua-zon yang terhasil adalah sama dengan nilai literatur. Dapatan kajian menunjukkan cas terbakar pada isipadu yang banyak adalah tidak diingini sebagai penyerap. Model tiga bahagian zon menunjukkan kecekapan haba enjin tertinggi dan tekanan puncak pada jisim bakar dengan nisbah 7:3. Manakala, pengurangan umum telah diperhatikan pada pengeluaran N2 di peralihan tiga-zon dan model empat zon.


Download data is not yet available.


Metrics Loading ...


Yan B, Wang H, Zheng Z, Qin Y, Yao M. (2018) The effect of combustion chamber geometry on in-cylinder flow and combustion process in a stoichiometric operation natural gas engine with EGR. Applied Thermal Engineering, 129: 199-211. DOI:

Evans RL. (1992) Combustion chamber design for a lean-burn SI engine. SAE Transactions, 1611-1616. DOI:

Wohlgemuth S, Roesler S, Wachtmeister G. (2014) Piston design optimization for a two-cylinder lean-burn natural gas engine-3D-CFD-simulation and test bed measurements (No. 2014-01-1326). SAE Technical Paper. DOI:

Evans RL, Tippett EC. (1990) The effects of squish motion on the burn-rate and performance of a spark-ignition engine (No. 901533). SAE Technical Paper. DOI:

Jones MK, Heaton DM. (1989) Nebula combustion system for lean burn spark ignited gas engines (No. 890211). SAE Technical Paper. DOI:

Sakurai T, Iko M, Okamoto K, Shoji F. (1993) Basic research on combustion chambers for lean burn gas engines. SAE Transactions, 2240-2250. DOI:

Johansson B, Olsson K. (1995) Combustion chambers for natural gas SI engines part I: Fluid flow and combustion. SAE Transactions, 374-385. DOI:

Olsson K, Johansson B. (1995) Combustion chambers for natural gas SI engines part 2: Combustion and emissions. SAE transactions, 499-511. DOI:

Masoudi R, Azad NL, McPhee J. (2014) Parameter identification of a quasi-dimensional spark-ignition engine combustion model (No. 2014-01-0385). SAE Technical Paper. DOI:

Kaprielian L, Demoulin M, Cinnella P, Daru V. (2013) Multi-zone quasi-dimensional combustion models for Spark-Ignition engines (No. 2013-24-0025). SAE Technical Paper. DOI:

Juntarakod P, Soontornchainacksaeng T. (2014) A quasi-dimensional three-zone combustion model of the diesel engine to calculate performances and emission using the diesel-ethanol dual fuel. Eng. Sci, 7(1): 19-37. DOI:

Sánche ÓJ, Cardona CA. (2012) Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis. Bioresource Technology, 104: 305-314. DOI:

Alamu OJ, Waheed MA, Jekayinfa SO. (2007) Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield. Energy for Sustainable Development, 11(3): 77-82. DOI:

Gnansounou E, Dauriat A. (2005) Ethanol fuel from biomass: A review. CSIR, 64 (11): 809-821.

Yücesu HS, Sozen A, Topgül T, Arcaklio?lu E. (2007) Comparative study of mathematical and experimental analysis of spark ignition engine performance used ethanol–gasoline blend fuel. Applied Thermal Engineering, 27(2-3): 358-368. DOI:

Ceviz MA, Yüksel F. (2005) Effects of ethanol–unleaded gasoline blends on cyclic variability and emissions in an SI engine. Applied Thermal Engineering, 25(5-6): 917-925. DOI:

Verma AP, Choube A. (2012) Ethanol as alternative fuel for SI engine - A review. 4(14): 90-95.

Srinivasan CA, Saravanan CG. (2010) Study of combustion characteristics of an SI engine fuelled with ethanol and oxygenated fuel additives. Journal of Sustainable Energy & Environment, 1: 85-91.

Taraba JL, Turner GM, Razor R. (1981) Energy in agriculture: The use of ethanol as an unmixed fuel for lnternal combustion engines. AEES, 14(8): 1-20

Park IJ, Yoo YH, Kim JG, Kwak DH, Ji, WS. (2011) Corrosion characteristics of aluminum alloy in bio-ethanol blended gasoline fuel: Part 2. The effects of dissolved oxygen in the fuel. Fuel, 90(2): 633-639. DOI:

Larsen U, Johansen T, Schramm J. (2009) Ethanol as a future fuel for road transportation: Main research report. DTU Mekanik,

Yoo YH, Park IJ, Kim JG, Kwak DH, Ji WS. (2011) Corrosion characteristics of aluminum alloy in bio-ethanol blended gasoline fuel: Part 1. The corrosion properties of aluminum alloy in high temperature fuels. Fuel, 90(3): 1208-1214. DOI:

Strong, RM. (1911). Gasoline and alcohol tests on internal-combustion engines (No. BM-BULL-32). Bureau of Mines, Washington, DC (USA).

Bhetalu AD, Patil SS, Ingole NW. An overview ethanol as a motor fuel. Journal of Engineering Research and Studies, 3(2): 50-53.

Bokhary AYF, Alhazmy M, Ahmad N, Albahkali A. (2014) Investigations on the utilization of ethanol-unleaded gasoline blends on SI engine performance and exhaust gas emission. International Journal of Engineering & Technology, 14(2): 88-96.

Karavalakis G, Durbin TD, Shrivastava M, Zheng Z, Villela M, Jung H. (2012) Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles. Fuel, 93: 549-558. DOI:

Yusaf T, Buttsworth D, Najafi G. (2009) Theoretical and experimental investigation of SI engine performance and exhaust emissions using ethanol-gasoline blended fuels. In 2009 3rd International Conference on Energy and Environment (ICEE) (pp. 195-201). IEEE. DOI:

Kumar, J, Trivedi, D, Mahara, P, Butola, R. (2013). Performance study of ethanol blended gasoline fuel in spark ignition engine. Journal of Mechanical and Civil Engineering, 7(3): 71-78. DOI:

Pai S, Tasneem HA, Rao A, Shivaraju N, Sreeprakash B. (2013) Study of impact of ethanol blends on SI engine performance and emission. National Conference on Challenges in Research & Technology in the Coming Decades CP648, pp 1-7. DOI:

De Simio L, Gambino M, Iannaccone S. (2012) Effect of ethanol content on thermal efficiency of a spark-ignition light-duty engine. International Scholarly Research Network Renewable Energy, 2012(219703): 1-8. DOI:

Dare AA, Ismail OS, Olatunde OB. (2017) Development of three-zone transitional model for reciprocating internal combustion engine analysis using gasoline. Current Journal of Applied Science and Technology, 25(6): 1-11. DOI:

Dare AA, Olatunde OB. (2018) Development of four-zone segmented transitional model for reciprocating internal combustion engine analysis using gasoline. American Journal of Science, Engineering and Technology, 3(2): 46-52. DOI:

Buttsworth DR. (2002) Spark ignition internal combustion engine modelling using Matlab. Faculty of engineering & surveying technical reports TR-2002-02: 1-41.

Ferguson CR, Kirkpatrick AT. (2016) Internal combustion Engine. Applied Thermosciences. Third Edition. John Wiley & Sons, Ltd.

Kodavasal J, Keum S, Babajimopoulos A. (2011) An extended multi-zone combustion model for PCI simulation. Combustion Theory and Modelling, 15(6): 893-910. DOI:

Asgari O, Hannani SK, Ebrahimi R. (2012) Improvement and experimental validation of a multi-zone model for combustion and NO emissions in CNG fueled spark ignition engine. Journal of Mechanical Science and Technology, 26(4): 1205-1212. DOI:

Heywood JB. (1988) Internal Combustion Engine Fundamentals. McGraw Hill, Inc. New York series (11) pp.1




How to Cite

Dare, A. A. ., Olatunde, O., Ismail, O. S., Shote, A. S., Alamu, O. J., & Sulaiman, M. A. (2021). INVESTIGATION OF MULTI-ZONE MODELS FOR SPARK IGNITION ENGINE FUELED WITH ETHANOL. IIUM Engineering Journal, 22(2), 339–351.



Mechanical and Aerospace Engineering