PREPARATION OF THE ELECTROSPUN POLYVINYLIDENE FLUORIDE / POLYVINYL ALCOHOL SCAFFOLD AS A POTENTIAL TISSUE REPLACEMENT

Authors

  • Mohd Syahir Anwar Hamzah
  • Nurul Amira Ab Razak
  • Celine Ng
  • Akmal Hafiszi Abdul Azize
  • Jumadi Abdul Sukor
  • Soon Chin Fhong https://orcid.org/0000-0002-4972-5729
  • Mohd Safiee Idris
  • Nadirul Hasraf Mat Nayan Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, MALAYSIA

DOI:

https://doi.org/10.31436/iiumej.v22i1.1548

Keywords:

polyvinylidene fluoride, polyvinyl alcohol, electrospinning, tissue engineering, nanofibre scaffold

Abstract

:  Polyvinylidene fluoride (PVDF), a piezoelectric material, is commonly used in tissue engineering due to its potential for mimicking the electrical microenvironment of biological conditions for tissue development. In this present research, polyvinyl alcohol (PVA) was introduced into electrospun PVDF fabrication through an electrospinning process, aiming to enhance the nanofibrous membrane's biocompatibility properties by improving the hydrophilicity properties to act as an artificial tissue scaffold. The electrospun PVDF/PVA membranes are found to be optimum at a PVDF-to-PVA ratio of 90:10 due to its excellent mechanical, morphological, and hydrophilicity conductivity properties. Fourier transform infrared (FTIR) spectroscopy verified strong hydrogen bonding interaction formed between the fluorine group of PVDF with oxygen-containing in the hydroxyl group of PVA. In-vitro cell culture showed that the enhanced hydrophilic property of electrospun PVDF/PVA could significantly enhance the cell growth. These positive results indicated that the scaffold could be implemented as artificial tissue material for tissue engineering applications.

ABSTRAK: Polivinilidena fluorida (PVDF) adalah bahan piezoelektrik yang biasa digunakan dalam kejuruteraan tisu kerana potensinya menyerupai keadaan persekitaran mikro-elektrik biologi bagi perkembangan tisu. Dalam penyelidikan ini, polivinil alkohol (PVA) diperkenalkan ke dalam fabrikasi pintalan-elektro PVDF melalui proses pemintalan-elektro, yang bertujuan bagi mengembangkan sifat biokompatibiliti membran nanogentian dengan meningkatkan sifat hidrofilik bagi menjadi perancah tisu tiruan. Membran pintalan-elektro PVDF / PVA didapati optimum pada nisbah PVDF-ke-PVA, 90:10 kerana sifat kekonduksian, mekanikal, morfologi dan hidrofiliknya yang sangat baik. Spektroskopi transformasi inframerah Fourier (FTIR) mengesahkan interaksi ikatan hidrogen yang kuat terbentuk antara kumpulan fluoro PVDF dengan oksigen yang terkandung dalam kumpulan hidroksil PVA. Kultur sel secara in-vitro menunjukkan bahawa sifat hidrofilik pintalan-elektro PVDF / PVA dapat meningkatkan pertumbuhan sel secara signifikan. Hasil positif ini menunjukkan bahawa perancah ini dapat digunakan sebagai bahan tisu buatan bagi aplikasi kejuruteraan tisu.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Okutan N. Terzi P, Altay F. (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39: 19-26. https://doi.org/10.1016/j.foodhyd.2013.12.022

Meng ZX, Xu XX, Zheng W, Zhou HM, Li L, Zheng YF, Lou X. (2011) Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 84(1): 97-102. https://doi.org/10.1016/j.colsurfb.2010.12.022

Khoo W, Koh CT, Lim SC. (2017) Synthetic and natural fibrous scaffolds for soft tissue engineering applications. Journal of Mechanical Engineering, 4, 223-233. Retrieved from https://jmeche.uitm.edu.my/

Sava?er S, K?nay ÖB, Kara BY, Cay P. (2019) Organ transplantation logistics: a case for Turkey. OR Spectrum, 41(2): 327-356.

Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 60(4): 613-621. https://doi.org/10.1002/jbm.10167

Franco RA, Nguyen TH, Lee BT. (2011) Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Journal of Materials Science: Materials in Medicine, 22(10): 2207. https://doi.org/10.1007/s10856-011-4402-8

Hackett JM, Dang TT, Tsai EC, Cao X. (2010) Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation. Materials, 3(6): 3714-3728. https://doi.org/10.3390/ma3063714

Shuai C, Zeng Z, Yang Y, Qi F, Peng S, Yang W, He C, Wang G, Qian G. (2020) Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Materials & Design, 190: 108564. https://doi.org/10.1016/j.matdes.2020.108564

Kitsara M, Blanquer A, Murillo G, Humblot V, Vieira SDB, Nogués C, Ibáñez E, Esteve J, Barrios L. (2019) Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale, 11(18): 8906-8917. https://doi.org/10.1039/C8NR10384D

Shao HJF, Wang H, Lin T. (2015) Effect of electospinning parameter and polymer conccentration on mechanical to electrical energy conversion of randomly oriented electrospun poly(vinylidene fluoride) nanofiber mats. Advances, 5(19): 14345-50. https://doi.org/10.1039/C4RA16360E

Ribeiro C, Correia DM, Ribeiro S, Sencadas V, Botelho G, Lanceros?Méndez S. (2015) Piezoelectric poly (vinylidene fluoride) microstructure and poling state in active tissue engineering. Engineering in Life Sciences, 15(4): 351-356. https://doi.org/10.1002/elsc.201400144

Jeong HG, Han YS, Jung KH, Kim YJ. (2019) Poly (vinylidene fluoride) composite nanofibers containing polyhedral oligomeric silsesquioxane–epigallocatechin gallate conjugate for bone tissue regeneration. Nanomaterials, 9(2): 184. https://doi.org/10.3390/nano9020184

Hamzah MSA, Azize AHA, Yusof S, Noor SM, Nayan NHM. (2019) Electrospinning and controlled release studies of polyvinylidene fluoride/pectin electrospun loaded with crocin as neuroprotective membrane prospect. Proceedings of National Innovation & Invention Competition 2019 (pp. 335-338). Johor, Malaysia: Universiti Tun Hussein Onn Malaysia, ISBN: 978-967-2389-31-6

Park JA, Cho KY, Han CH, Nam A, Kim JH, Lee SH, Choi JW. (2019) Quaternized amphiphilic block copolymers/graphene oxide and a poly (vinyl alcohol) coating layer on graphene oxide/poly (vinylidene fluoride) electrospun nanofibers for superhydrophilic and antibacterial properties. Scientific Reports, 9(1): 383. https://doi.org/10.1038/s41598-018-36479-w

Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki M. (2015) Preparation and characterization of polyvinylidene fluoride/graphene superhydrophobic fibrous films. Polymers, 7(8): 1444-1463. https://doi.org/10.3390/polym7081444

Wu S, Chen MS, Maurel P, Lee YS, Bunge MB, Arinzeh TL. (2018) Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination in vitro. Journal of Neural Engineering, 15(5): 056010. https://doi.org/10.1088/1741-2552/aac77f

Young TH, Lin UH, Lin DJ, Chang HH, Cheng LP. (2009) Immobilization of L-lysine on microporous PVDF membranes for neuron culture. Journal of Biomaterials Science, Polymer Edition, 20(5-6): 703-720. https://doi.org/10.1163/156856209X426574

Nkhwa S, Lauriaga KF, Kemal E, De, S. (2014) Poly (vinyl alcohol): physical approaches to designing biomaterials for biomedical applications. In Conference Papers in Science (Vol. 2014). Hindawi. https://doi.org/10.1155/2014/403472

Uslu I, Da?tan H, Alta? A, Yayli A, Atakol O, Aksu ML. (2007) Preparation and characterization of pva/boron polymer produced by an electrospinning technique. e-Polymers: 7(1). DOI: https://doi.org/10.1515/epoly.2007.7.1.1568

Teodorescu, M., Bercea, M., & Morariu, S. (2019). Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances, 37(1): 109-131. https://doi.org/10.1016/j.biotechadv.2018.11.008

Kumar A, Han SS. (2017) PVA-based hydrogels for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(4): 159-182. https://doi.org/10.1080/00914037.2016.1190930

Hamzah MSA, Razak SIA, Kadir MRA, Bohari SPM, Nayan NHM. (2020) Fabrication and evaluation of polylactic acid/pectin composite scaffold via freze extraction for tissue engineering. Journal of Polymer Engineering, 40(5). DOI: https://doi.org/10.1515/polyeng-2019-0377

Hamzah MSA, Austad A, Razak SIA, Nayan NHM. (2019) Tensile and wettability properties of electrospun polycaprolactone coated with pectin/polyaniline composite for drug delivery application. International Journal of Structural Integrity, 10(5): 704-713. https://doi.org/10.1108/IJSI-04-2019-0033

Pezeshki-Modaress M, Zandi M, Rajabi S. (2018) Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: An in vitro study. Progress in Biomaterials, 7(3): 207-218. https://doi.org/10.1007/s40204-018-0094-1

Alhasssan ZA, Burezq YS, Nair R, Shehata N. (2018) Polyvinylidene difluoride piezoelectric electrospun nanofibers: Review in synthesis, fabrication, characterizations, and applications. Journal of Nanomaterials, 2018: 1-12. https://doi.org/10.1155/2018/8164185

Saudi A, Rafienia M, Zargar Kharazi A, Salehi H, Zarrabi A, Karevan M. (2019) Design and fabrication of poly (glycerol sebacate)?based fibers for neural tissue engineering: Synthesis, electrospinning, and characterization. Polymers for Advanced Technologies, 30(6): 1427-1440. https://doi.org/10.1002/pat.4575

Raffaini G, Ganazzoli F. (2007) Understanding the performance of biomaterials through molecular modeling: crossing the bridge between their intrinsic properties and the surface adsorption of proteins. Macromolecular Bioscience, 7(5): 552-566. https://doi.org/10.1002/mabi.200600278

Menzies KL, Jones L. (2010) The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science, 87(6): 387-399. https://doi.org/10.1097/OPX.0b013e3181da863e

Pan JF, Liu NH, Sun H, Xu F. (2014) Preparation and characterization of electrospun PLCL/poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS One, 9(11). https://doi.org/10.1371/journal.pone.0112885

Rianjanu A, Winardianto B, Munir M, Kartini I, Triyana K. (2016) Electrical conductivity improvement of polyvinyl alcohol nanofiber by solvent vapour treatment. International Journal on Advanced Science, Engineering and Information Technology, 6(5): 675-681. https://doi.org/10.18517/IJASEIT.6.5.1055

Aqeel SM, Wang Z, Than L, Sreenivasulu G, Zeng X. (2015) Poly (vinylidene fluoride)/poly (acrylonitrile)–based superior hydrophobic piezoelectric solid derived by aligned carbon nanotubes in electrospinning: fabrication, phase conversion and surface energy. RSC Advances, 5(93): 76383-76391. https://doi.org/10.1039/C5RA11584A

Shahini, A., Yazdimamaghani, M., Walker, K. J., Eastman, M. A., Hatami-Marbini, H., Smith BJ, Ricci JL, Madihally SV, Vashaee D, Tayebi L. (2014) 3D conductive nanocomposite scaffold for bone tissue engineering. International Journal of Nanomedicine, 9: 167. https://doi.org/10.2147/IJN.S54668

Balint R, Cassidy NJ, Cartmell SH. (2014) Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6): 2341-2353. https://doi.org/10.1016/j.actbio.2014.02.015

Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB. (2018) Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regeneration Research, 13(8): 1455. https://doi.org/10.4103/1673-5374.235303

Dong R, Zhao X, Guo B, Ma PX. (2016) Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy. ACS Applied Materials & Interfaces, 8(27): 17138-17150. https://doi.org/10.1021/acsami.6b04911

Park MJ, Gonzales RR, Abdel-Wahab A, Phuntsho S, Shon HK. (2018) Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane. Desalination, 426: 50-59. https://doi.org/10.1016/j.desal.2017.10.042

Boccaccio T, Bottino A, Capannelli G, Piaggio P. (2002) Characterization of PVDF membranes by vibrational spectroscopy. Journal of Membrane Science, 210(2): 315-329. https://doi.org/10.1016/S0376-7388(02)00407-6

Martins P, Lopes AC, Lanceros-Mendez S. (2014) Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4): 683-706. https://doi.org/10.1016/j.progpolymsci.2013.07.006

Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. (2008) Electrospun poly (?-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29(34): 4532-4539. https://doi.org/10.1016/j.biomaterials.2008.08.007

Downloads

Published

2020-01-04

How to Cite

Hamzah, M. S. A., Razak, N. A. A., Ng, C., Azize, A. H. A., Sukor, J. A. ., Fhong, S. C., Idris, M. S., & Nayan, N. H. M. (2020). PREPARATION OF THE ELECTROSPUN POLYVINYLIDENE FLUORIDE / POLYVINYL ALCOHOL SCAFFOLD AS A POTENTIAL TISSUE REPLACEMENT . IIUM Engineering Journal, 22(1), 245–258. https://doi.org/10.31436/iiumej.v22i1.1548

Issue

Section

Materials and Manufacturing Engineering