SURFACE ROUGHNESS PREDICTION IN TURNING PROCESS BY APPLYING COMPUTER VISION METHOD
DOI:
https://doi.org/10.31436/iiumej.v22i2.1507Keywords:
Image Process, Roughness Measurement, Stylus Method, Non-contact MethodAbstract
This paper reports the utilization of computer vision and backlight techniques to determine the surface roughness of a workpiece under a variety of process parameters. A CCD (Charge-Coupled Device) camera was used to capture the image of the edge of the workpiece of the turned components using backlight technology to provide an edge roughness profile. The image was processed using SRVISION software developed in MATLAB to extract the profile of the workpiece and calculated the arithmetic average value of roughness (Ra) and root mean square roughness (Rq). The experiments are carried out with AISI 1045 (medium carbon steel), using various feed rates and cutting speeds, comparison is then made of the surface roughness values achieved through the conventional stylus probe method and the image processing technique. The comparison indicates that the vision method provides precise and consistent results with a correlation up to 0.99 with the traditional stylus method. The mean variations in Ra and Rq between the two methods were just 1.65 and 1.433 percent, respectively. As the vision method is a non-contact procedure, it can be significant potential for application without damaging the machined surfaces in the in-process inspection of the components as well as aids monitoring of the components in a shorter period.
ABSTRAK: Kajian ini menggunakan visual komputer dan teknik cahaya belakang bagi memperoleh kekasaran permukaan sesuatu bahan pada pelbagai proses parameter. Kamera jenis CCD (Peranti Terganding-Cas) telah digunakan bagi memperoleh imej tepi bagi komponen yang dipusing menggunakan teknologi cahaya belakang bagi menghasilkan profil imej tepi yang jelas. Imej ini diproses menggunakan perisian SRVISION MATLAB bagi menghasilkan profil bahan dan purata kiraan kekasaran permukaan (Ra) dan punca purata kuasa dua kekasaran permukaan (Rq). Eksperimen dijalankan menggunakan AISI 1045 (besi karbon pertengahan), menggunakan pelbagai kadar suapan dan kelajuan potongan. Perbandingan kemudian dibuat pada nilai kekasaran permukaan yang diperoleh melalui kaedah prob jarum stilus konvensional dan melalui teknik pemprosesan imej. Perbandingan menunjukkan kaedah visual memberikan ketepatan dan dapatan konsisten yang munasabah dengan korelasi sehingga 0.99 dengan kaedah prob jarum stilus tradisi. Purata variasi pada nilai Ra dan Rq antara dua kaedah adalah sebanyak 1.65 dan 1.433 peratus, masing-masing. Adapun kaedah visual adalah prosedur tanpa-sentuh, ianya sesuai dijalankan tanpa merosakkan permukaan mesin dalam proses penilaian komponen, juga membantu mengawasi komponen dalam waktu singkat.
Downloads
Metrics
References
Lee BY, Tarng YS. (2001) Surface roughness inspection by computer vision in turning operations. International Journal of Machine Tools and Manufacture, 41(9): 1251-1263. DOI: https://doi.org/10.1016/S0890-6955(01)00023-2
https://www.sciencedirect.com/science/article/abs/pii/S0890695501000232
Gadelmawla ES. (2004) A vision system for surface roughness characterization using the gray level co-occurrence matrix. NDT & E International, 37(7): 577-588.
https://doi.org/10.1016/j.ndteint.2004.03.004 DOI: https://doi.org/10.1016/j.ndteint.2004.03.004
Ghassan A.Al-Kindi, Bijan Shirinzadeh. (2007) An evaluation of surface roughness parameters measurement using vision-based data. International Journal of Machine Tools and Manufacture, 47(3-4): 697-708. https://doi.org/10.1016/j.ijmachtools.2006.04.013 DOI: https://doi.org/10.1016/j.ijmachtools.2006.04.013
Hu Zhongxiang, Zhu Lei, Teng Jiaxu, Ma Xuehong, Shi Xiaojun. (2009) Evaluation of three-dimensional surface roughness parameters based on digital image processing. International Journal of Advanced Manufacturing Technology, 40(3): 342-348. DOI: https://doi.org/10.1007/s00170-007-1357-5
https://link.springer.com/article/10.1007/s00170-007-1357-5
Fadare DA, Oni AO. (2009) Development and application of a machine vision system for measurement of surface roughness. ARPN Journal of Engineering and Applied Sciences, 4(5): 30-37.
Shahabi HH, Ratnam MM. (2010) Noncontact roughness measurement of turned parts using machine vision. The International Journal of Advanced Manufacturing Technology, 46: 275-284. https://link.springer.co/artmicle/10.1007/s00170-009-2101-0 DOI: https://doi.org/10.1007/s00170-009-2101-0
Sridhar VG, Adithan M. (2012) An in-process approach for monitoring and evaluating the surface roughness of turned components. European Journal of Scientific Research, 68(4): 534-543.
Mohan Kumar Balasundaram, Mani Maran Ratnam. (2014) In-process measurement of surface roughness using machine vision with sub-pixel edge detection in finish turning. International Journal of Precision Engineering and Manufacturing, 15(11): 2239-2249. DOI: https://doi.org/10.1007/s12541-014-0587-3
https://link.springer.com/article/10.1007/s12541-014-0587-3
Srivani A, Anthony Xavior M. (2014) Investigation of surface texture using image processing techniques. 12th Global Congress on Manufacturing and Management, GCMM 2014, Procedia Engineering, 97 (2014): 1943-1947. https://doi.org/10.1016/j.proeng.2014.12.348 DOI: https://doi.org/10.1016/j.proeng.2014.12.348
Qingqun Mai, Yanming Quan, Peijie Liu, Guo Ding. (2016) A new method of on-line turned surface monitoring by digital image processing. MATEC Web of Conferences, MMME 2016, 63. https://doi.org/10.1051/matecconf/20166304030 DOI: https://doi.org/10.1051/matecconf/20166304030
Naresh P, Syed Altaf Hussain, Durga Prasad B. (2019) Surface Roughness Measurement of Machined Surfaces by Machine Vision Technique. International Journal of Recent Technology and Engineering (IJRTE), 7(ICETESM): 129-134.
https://www.ijrte.org/wp-content/uploads/papers/v7iicetesm18/
Dhiren R Patel, Mysore BK, Vinay Vakharia. (2020) Modeling and prediction of surface roughness using multiple regressions: A noncontact approach. Wiley, Engineering Reports. 2(e12119): 1-15. https://doi.org/10.1002/eng2.12119 DOI: https://doi.org/10.1002/eng2.12119
Dhiren R Patel, Harshit Thakker, Kiran MB, Vinay Vakharia. (2020) Surface Roughness Prediction of Machined Components Using Gray Level Co-occurrence Matrix and Bagging Tree. FME Transactions, 48(2): 468-475. DOI: https://doi.org/10.5937/fme2002468P
Kumar BM, Ratnam MM. (2015) Machine vision method for non-contact measurement of surface roughness of a rotating workpiece. Sensor Review, 35(1): 10-19.
https://doi.org/10.1108/SR-01-2014-609 DOI: https://doi.org/10.1108/SR-01-2014-609
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 IIUM Press
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.