ASSIST AS NEEDED CONTROL STRATEGY FOR UPPER LIMB REHABILITATION ROBOT IN EATING ACTIVITY

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1480

Keywords:

Assist-As Needed Control, Upper Limb Rehabilitation Robot, Control Input Regulation, PID Controller and Eating Activity.

Abstract

The slacking behaviour or lack of participation from impaired patients during robotic rehabilitation therapy is one of the factors that slow down their recovery. The implementation of Assist As Needed (AAN) control law in the robotic assisted rehabilitation treatment may alleviate this problem and encourage the patients to be actively involved in the rehabilitation exercises. This paper presents a new Assist As Needed control strategy for an upper limb rehabilitation robot in assisting subjects with various levels of capabilities to regain their original upper limb’s functionality in realizing basic motions in eating activity. The controller consists of Proportional, Integral, Derivative (PID) controller in the feedback loop, with an adjustable gain K that varies according to the user’s level of capability. A Force Sensing Resistor (FSR) is used to identify the user’s upper extremity capability level. The controller regulates the necessary amount of assistance provided by the robot based on the information obtained from the sensor. The automatic adjustment of the robot’s assistance to the subjects leads them to put in their own effort in accomplishing the desired movements. The proposed control strategy is simple, easy to program, and mathematically less complicated. A prototype of the wearable upper limb rehabilitation robot has been built and a Graphical User Interface (GUI) has been developed using MATLAB software to facilitate the rehabilitation process and for progress monitoring. The simulation and experimental results have proven that the proposed control strategy is successful in regulating the necessary amount of robot assistance according to the patients’ level of capability. The proposed controller has effectively driven the upper limb rehabilitation robot to achieve the desired trajectory with zero steady state error, percentage overshoot less than 8% and settling time below 6 seconds, whilst providing the correct amount of robotic assistance in accordance to the subjects’ capability level.

ABSTRAK: Reaksi kurang respon dari pesakit kurang keupayaan semasa terapi pemulihan robotik adalah satu faktor melambatkan kadar pemulihan. Pelaksanaan teknik kawalan Bantu Apabila Diperlukan (AAN) dalam rawatan pemulihan dengan bantuan robot dapat membantu dan mendorong pesakit terlibat secara aktif dalam latihan pemulihan. Artikel ini membentangkan strategi kawalan baru, iaitu Bantu Apabila Diperlukan oleh robot pemulihan bagi anggota atas pesakit yang mempunyai pelbagai tahap kemampuan, dalam mengembalikan fungsi asas gerakan tangan seperti aktiviti makan. Teknik kawalan terdiri daripada kawalan Berkadar, Integral, Terbitan (PID) dalam lingkaran tindak balas, dengan pemboleh ubah K mengikut tahap kemampuan pesakit. Alat pengukur Resistan Daya Rasa (FSR) digunakan bagi mengenal pasti tahap kemampuan maksima pesakit dalam menggerakkan tangan. Berdasarkan maklumat yang diperoleh daripada sensor, teknik kawalan akan menghantar maklumat kepada robot bagi membantu pesakit. Bantuan automatik yang dibekalkan robot kepada pesakit akan mendorong pesakit berusaha melakukan gerakan yang diperlukan. Strategi kawalan yang dicadangkan ini adalah ringkas, mudah diprogramkan dan kurang rumit dari segi matematik. Sebuah prototaip robot pemulihan anggota tangan telah dibina dan sebuah platform grafik bagi pengguna (Antara Muka Grafik Pengguna, GUI) telah dibangunkan menggunakan perisian MATLAB bagi memudahkan proses pemulihan dan pemantauan kemajuan pesakit. Hasil simulasi dan eksperimen membuktikan bahawa strategi cadangan kawalan ini berjaya mengatur jumlah bantuan daripada robot bersesuaian dengan tahap kemampuan pesakit. Teknik kawalan yang dicadangkan telah berjaya menggerakkan robot pemulihan tangan bagi mencapai lintasan gerakan yang diinginkan dengan ralat sifar pada keadaan stabil, peratusan ayunan berlebihan kurang daripada 8%, masa penyelesaian bawah 6 saat dan pada masa sama, memberikan maklumat bantuan robot yang tepat, bersesuaian dengan tahap kemampuan pesakit.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Krishnamoorthy M. (2007) Killer stroke: Six Malaysians hit every hour. In The Star, April 24, 2007. [https://www.thestar.com.my/news/nation/2007/04/24/killer-stroke-six-malaysians-hit-every-hour/]

RM300 juta setahun rawatan pesakit strok. In Bernama, October 28, 2016. [https://www.freemalaysiatoday.com/category/bahasa/2016/10/28/rm300-juta-setahun-rawatan-pesakit-strok/]

Palmer KT. (2003) Pain in the forearm, wrist and hand. Best Pract. Res. Clinical Rheumatol, 17(1): 113-135. https://doi.org/10.1016/S1521-6942(02)00100-6

Hussain Z, Azlan NZ, Yusof AZ. (2018) Human hand motion analysis during different eating activities. Applied bionics and biomechanics: 2018: 1-12. https://doi.org/10.1155/2018/8567648

Hussain Z, Azlan NZ. (2017) Human lower arm analysis during different eating activities. In Proceedings of the 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC): 3-5 August 2017; Shah Alam. pp 93-98. https://doi.org/10.1109/ICSGRC.2017.8070575.

Chiri N, Vitiello F, Giovacchini S, Roccella F, Vecchi, Carrozza MC. (2012) Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Transactions on Mechatronics, 17(5): 884-894. https://doi.org/10.1109/TMECH.2011.2144614.

Squeri V, Basteris A, Sanguineti V. (2011) Adaptive regulation of assistance “as needed” in robot-assisted motor skill learning and neurorehabilitation. In Proceedings of the IEEE International Conference on Rehabilitation Robotics: 29 June – 1 July 2011; Zurich, Switzerland. pp. 1-6, https://doi.org/10.1109/ICORR.2011.5975375.

Houwink A, Nijland RH, Geurts AC, Kwakkel G. (2013) Functional recovery of the paretic upper limb after stroke: who regains hand capacity? Archives of physical medicine and rehabilitation, 94(5): 839-844. https://doi.org/10.1016/j.apmr.2012.11.031

Hussain S, Jamwal PK, Ghayesh MH, Xie SQ. (2016) Assist As Needed control of an intrinsically compliant robotic gait training orthosis. IEEE Transactions on Industrial Electronics, 64(2): 1675-1685. https://doi.org/10.1109/TIE.2016.2580123.

Luo L, Peng L, Wang C, Hou ZG. (2019) A greedy Assist As Needed controller for upper limb rehabilitation. IEEE transactions on neural networks and learning systems, 30(11): 3433-3443. https://doi.org/10.1109/TNNLS.2019.2892157.

Gui K, Tan U, Liu H, Zhang D. (2020) Electromyography-driven progressive Assist As Needed control for lower limb exoskeleton. IEEE Transactions on Medical Robotics and Bionics, 2(1): 50-58. https://doi.org/10.1109/TMRB.2020.2970222.

Asl HJ, Narikiyo T, Kawanishi M. (2017) An Assist As Needed control scheme for robot-assisted rehabilitation. In Proceedings of the 2017 American Control Conference (ACC): 24 - 26 May 2017; Seattle, Washington. pp 198-203. https://doi.org/10.23919/ACC.2017.7962953

Pérez-Rodríguez R, Costa C, Cáceres C, Tormos JM, Medina J, Gómez EJ. (2014) Anticipatory assistance-as-needed control algorithm for a multijoint upper limb robotic orthosis in physical neurorehabilitation. Expert Systems with Applications, 41(8): 3922-3934. https://doi.org/10.1016/j.eswa.2013.11.047

Kapsalyamov A, Hussain S, Sharipov A, Jamwal P. (2019) Brain–computer interface and Assist As Needed model for upper limb robotic arm. Advances in Mechanical Engineering, 11(9): 1-9. https://doi.org/10.1177/1687814019875537.

Frullo JM, Elinger J, Pehlivan AU, Fitle K, Nedley K, Francisco GE, O’Malley MK. (2017). Effects of Assist As Needed upper extremity robotic therapy after incomplete spinal cord injury: a parallel-group controlled trial. Frontiers in Neurorobotics, 11(26): 1-34. https://doi.org/10.3389/fnbot.2017.00026.

Peng L, Wang C, Luo L, Chen S, Hou ZG, Wang W. (2018) A CPG-inspired Assist As Needed controller for an upper-limb rehabilitation robot. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI): 18-21 November 2018; Bangalore, India. pp 2200-2206. https://doi.org/10.1109/SSCI.2018.8628896

Agarwal P, Deshpande AD. (2017) Subject-specific Assist As Needed controllers for a hand exoskeleton for rehabilitation. IEEE Robotics and Automation Letters, 3(1): 508-515. https://doi.org/10.1109/lra.2017.2768124

Stroppa F, Loconsole C, Marcheschi S, Mastronicola N, Frisoli A. (2018) An improved adaptive robotic assistance methodology for upper-limb rehabilitation. In Proceedings of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications: 13 – 16 June 2018; Pisa, Italy. Edited by: Prattichizzo D, Shinoda H, Tan H, Ruffaldi E, Frisoli A; pp 513-525. https://link.springer.com/chapter/10.1007/978-3-319-93399-3_44

Taheri H, Reinkensmeyer DJ, Wolbrecht ET. (2016) Model-based assistance-as-needed for robotic movement therapy after stroke. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS: 17 – 20 August 2016; Florida, USA. pp 21242127. https://doi.org/10.1109/EMBC.2016.7591148.

Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE. (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(3): 286-297. https://doi.org/10.1109/TNSRE.2008.918389.

Bower C, Taheri H, Wolbrecht E. (2013) Adaptive control with state-dependent modeling of patient impairment for robotic movement therapy. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR): 24-26 June 2013; Seattle, USA. pp. 1-6, https://doi.org/10.1109/ICORR.2013.6650460.

Guidali M, Schlink P, Duschau-Wicke A, Riener R. (2011) Online learning and adaptation of patient support during ADL training. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics: 29 June - 1 July 2011; Zurich, Switzerland. pp 1-6, https://doi.org/10.1109/ICORR.2011.5975434.

Pehlivan AU, Sergi F, O'Malley MK. (2015) A subject-adaptive controller for wrist robotic rehabilitation. IEEE/ASME Transactions on Mechatronics, 20(3): 1338-1350. https://doi.org/10.1109/TMECH.2014.2340697

Mounis SYA, Azlan NZ, Sado F. (2019) Assist As Needed control strategy for upper-limb rehabilitation based on subject’s functional ability. Measurement and Control 52 (9-10): 1354-1361. https://doi.org/10.1177/0020294019866844

Mounis SYA, Azlan NZ, Sado F. (2017) Progress based Assist As Needed control strategy for upper-limb rehabilitation. In Proceedings of the 2017 IEEE Conference on Systems, Process and Control (ICSPC): 15-17 December 2017; Malacca, Malaysia. pp 65-70. https://doi.org/10.1109/SPC.2017.8313023

Kashtwari U, Azlan NZ, Shahdad I. (2020) Wearable upper limb motion assist robot for eating activity. Applied Research and Smart Technology (ARSTech) 1 (1), pp 1-10. https://doi.org/10.23917/arstech.v1i1.28

Cytron marketplace [https://www.cytron.io/]

Lukman NS. (2019) Assist As Needed Control of upper limb rehabilitation robot for eating activity. Final Year Project Report. International Islamic University Malaysia, Kulliyyah of Engineering.

Digi-key electronics [https://www.digikey.com/]

DC motor speed: System modeling

[http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling.

Downloads

Published

2020-01-04

How to Cite

Azlan, N. Z. ., & Lukman, N. S. (2020). ASSIST AS NEEDED CONTROL STRATEGY FOR UPPER LIMB REHABILITATION ROBOT IN EATING ACTIVITY. IIUM Engineering Journal, 22(1), 298–322. https://doi.org/10.31436/iiumej.v22i1.1480

Issue

Section

Mechatronics and Automation Engineering

Most read articles by the same author(s)