WSN-BASED MONITORING SYSTEMS FOR THE SOLAR POWER STATIONS OF THE TELECOMMUNICATION DEVICES

Authors

  • Doston Khasanov Tashkent University of Information Technologies named after Muhammad al-Khwarizmi https://orcid.org/0000-0001-5285-3775
  • Khalimjon Khujamatov Department of “Data communication networks and systems” in TUIT named after Muhammad al-Khwarizmi https://orcid.org/0000-0001-5206-635X
  • Bayram Fayzullaev Department of "Telecommunication engineering" of Nukus Branch of TUIT
  • Ernazar Reypnazarov Department of “Data communication networks and systems” in TUIT named after Muhammad al-Khwarizmi https://orcid.org/0000-0003-0100-3708

DOI:

https://doi.org/10.31436/iiumej.v22i2.1464

Keywords:

Real-time monitoring system, solar power stations, IoT, WSN, ZigBee, Proteus software

Abstract

Renewable energy sources are an increasingly popular way to generate electrical energy for telecommunications systems. The use and effectiveness of remote monitoring systems in such systems has led to growing interests relatively to it. As with any new technological systems, new problems have arisen in the use of renewable energy sources in telecommunications systems and the use of IoT-based remote monitoring systems in them. In particular, one of these problems is the decentralization of remote monitoring systems for renewable power plants of telecommunication systems. The paper details the stages of development and modelling of open-source centralized monitoring systems for solar power station of telecommunication systems. In this paper, a real-time remote monitoring system of solar power sources was modelled and investigated by wireless sensor networks of telecommunications devices. Proteus software environment was obtained for modelling. Before modelling the system, a system structure and a block diagram were developed, each of the elements that are part of the system is described. Software for the system was created. The developed structure and software were tested by modelling. The results of the modelling were presented in a virtual terminal, an oscillography, and a local web browser.

ABSTRAK: Sumber tenaga boleh baharu semakin meningkat popular dalam menghasilkan tenaga elektrik bagi sistem telekomunikasi. Penggunaan dan keberkesanan sistem pemonitoran jarak jauh dalam jaringan ini telah membawa kepada peningkatan minat kepada tenaga boleh baharu. Walau bagaimanapun, melalui sistem teknologi baru ini, masalah baru timbul dalam penggunaan punca tenaga boleh baharu dalam sistem telekomunikasi dan penggunaan bersama sistem pemonitoran berdasarkan IoT. Khususnya dalam desentralisasi sistem pemonitoran jarak jauh bagi loji kuasa sistem telekomunikasi. Kajian ini merincikan peringkat pembinaan dan model sumber terbuka berpusat sistem pemonitoran bagi sistem janakuasa solar sistem telekomunikasi. Kajian ini turut memodelkan sistem pemonitoran jarak jauh secara langsung bagi sumber kuasa solar dan dikaji dengan rangkaian sensor tanpa jaringan bagi alatan telekomunikasi. Perisian Proteus telah dihasilkan bagi model ini. Sebelum model sistem dibina, struktur sistem dan gambar rajah blok dibina. Setiap unsur dalam sistem ini diperihalkan. Perisian bagi sistem ini turut dibina. Struktur yang dibina dan perisian ini diuji melalui model. Hasil dapatan model dibentangkan dalam pangkalan maya, oscilograf dan pelayar web tempatan.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Pansare J. Sonavane SS. (2016) Efficient Energy Management in Smart Grids based on Raspberry Pi & Web of Things. International Journal of Science Technology & Engineering, 2(12).

Tanwar S, Tyagi S, Kumar S. (2018) The role of internet of things and smart grid for the development of a smart city. Intelligent Communication and Computational Technologies: January 2018; pp 23-33. https://doi.org/10.1007/978-981-10-5523-2_3 DOI: https://doi.org/10.1007/978-981-10-5523-2_3

Kabalci E, Kabalci Y. (2017) Remote Monitoring System Design for Photovoltaic Panels. The 10th International Symposium on Advanced Topics in Electrical Engineering: 23-25 March 2017, Bucharest, Romania. DOI: https://doi.org/10.1109/ATEE.2017.7905159

Chunming W, Liang Ch. (2012) The Monitoring System for the Wind Power Generation Based on the Wireless Sensor Network. International Conference on Future Electrical Power and Energy Systems: 2012; Hainan University, China. DOI: https://doi.org/10.1016/j.egypro.2012.02.202

Siddikov IX, Sattarov KhA., Khujamatov KhE. (2017) Modeling of the Transformation Elements of Power Sources Control. International Conference on Information Science and Communications Technologies: 2-4 November 2019; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/ICISCT.2017.8188581

Muradova AA, Khujamatov H. (2019) Results of Calculations of Parameters of Reliability of Restored Devices of the Multiservice Communication Network. International Conference on Information Science and Communications Technologies: 2-4 November 2019; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/ICISCT47635.2019.9011932

Nagalakshmi R, Babu BK, Prashanth D. (2014) Design and Development of a Remote Monitoring and Maintenance of Solar Plant Supervisory System. International Journal of Engineering and Computer Science, 3(12).

Prakash S, Vijayaragavan SP. (2015) Wireless Wind Turbine Monitoring Using Arduino. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(7).

Parikh A, Pathan F, Rathod B, Shah S. (2015) Solar Panel Condition Monitoring System based on Wireless Sensor Network. International Journal of Science, Engineering and Technology Research, 4(12).

Jumaat SA, Othman MH. (2017) Solar Energy Measurement Using Arduino. MATEC Web of Conferences 150: 2017, MUCET. DOI: https://doi.org/10.1051/matecconf/201815001007

Madhubala S, Nachammai R, Nandhini I, Preethisha AM, Paulin JJ. (2018) Solar power based remote monitoring and control of industrial parameters using IoT. International Research Journal of Engineering and Technology, 5(3).

Parveen R, Mohammed AM, Ravinder K. (2018) IoT based solar tracking system for efficient power generation. International Journal of Research and Analytical Reviews, 5(4). DOI: https://doi.org/10.21090/IJAERD.EC002

Vijayaragavan SP, Karthik B, Sriram M. (2019) Wind Mill Monitoring System using IOT and WI-FI. International Journal of Recent Technology and Engineering, 8(1).

Farzhana PM, Neelavathy R, Reshma SB, Saravanakumar U. (2019) Simulation, Fabrication and Monitoring of a Solar Power Plants using Arm7 and Proteus Software. International Journal of Engineering Science and Computing, 9(5).

Davronbekov DA, Matyokubov UK. (2020) The Impact of Mobile Communication Power Supply Systems on Communication Reliability and Viability and Their Solutions. International Journal of Advanced Science and Technology, 29(5): 374-385.

Davronbekov DA, Aliev UT, Isroilov JD. (2017) Using the energy of electromagnetic radiation as a source of power. International Conference on Information Science and Communications Technologies, Applications, Trends and Opportunities: 2-4 November, 2016; Tashkent, Uzbekistan https://doi.org/10.1109/ICISCT.2017.8188565 DOI: https://doi.org/10.1109/ICISCT.2017.8188565

Pulatov ShU, Aliev UT, Isroilov JD. (2017) Energy harvesters wireless charging technology. International Conference on Information Science and Communications Technologies, Applications, Trends and Opportunities: 2-4 November 2017; Tashkent, Uzbekistan. https://doi.org/10.1109/ICISCT.2017.8188566 DOI: https://doi.org/10.1109/ICISCT.2017.8188566

IEEE Computer Society. (2015) IEEE Standard for Low - Rate Wireless Networks. IEEE Std 802.15.4™-2015.

Khujamatov Kh, Khaleel A, Reypnazarov E, Khasanov D. (2020) Markov Chain Based Modeling Bandwith States of the Wireless Sensor Networks of Monitoring System. International Journal of Advanced Science and Technology, 29(4): 4889-4903. http://sersc.org/journals/index.php/IJAST/article/view/24920

Khujamatov Kh, Khasanov D, Reypnazarov E, Akhmedov N. (2020) Networking and Computing in Internet of Things and Cyber-Physical Systems. International Conference Application of Information and Communication Technologies: 7-9 October 2020; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/AICT50176.2020.9368793

Isroilov JD. (2016) Linearization spectral characteristics through passage by means of akusto-optical reconstructed filters. International Conference on Information Science and Communications Technologies, Applications, Trends and Opportunities: 2-4 November 2016; Tashkent, Uzbekistan. https://doi.org/10.1109/ICISCT.2016.7777386 DOI: https://doi.org/10.1109/ICISCT.2016.7777386

Khujamatov Kh.E., Khasanov D.T., Reypnazarov E.N. (2019) Modeling and Research of Automatic Sun Tracking System on the bases of IoT and Arduino UNO. International Conference on Information Science and Communications Technologies: 4-6 November 2019; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/ICISCT47635.2019.9011913

Davronbekov DA. (2016) Features measurement parameters and control functioning of integrated chips. International Conference on Information Science and Communications Technologies: 2-4 November 2016; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/ICISCT.2016.7777379

Khujamatov Kh.E., Khasanov D.T., Reypnazarov E.N. (2019) Research and Modelling Adaptive Management of Hybrid Power Supply Systems for Object Telecommunications based on IoT. International Conference on Information Science and Communications Technologies: 4-6 November 2019; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/ICISCT47635.2019.9011831

Davronbekov DA, Aliev UT, Isroilov JD, Alimdjanov XF. (2019) Power providing methods for wireless sensor. International Conference on Information Science and Communications Technologies: 4-6 November 2019; Tashkent, Uzbekistan. https://doi.org/10.1109/ICISCT47635.2019.9011850 DOI: https://doi.org/10.1109/ICISCT47635.2019.9011850

Skyllas-Kazacos M, Menictas C. (2013) Electricity Transmission, Distribution and Storage Systems. Woodhead Publishing Series in Energy.

Siddikov I, Sattarov Kh, Khujamatov Kh, Dexkhonov O, Agzamova M. (2018) Modeling of Magnet Circuits of Electromagnetic Transducers of the Three-Phases Current. International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering: 2-6 October; 2018; Novosibirsk; pp 419-422. DOI: https://doi.org/10.1109/APEIE.2018.8545714

Siddikov I, Sattarov Kh, Khujamatov H. (2016) Research of the Influence of Nonlinear Primary Magnetization Curves of Magnetic Circuits of Electromagnetic Transducers of the Three-phases Current. Universal Journal of Electrical and Electronic Engineering. Horizon Research Publishing Corporation, 4(1): 29-32 DOI: https://doi.org/10.13189/ujeee.2016.040104

Siddikov I, Sattarov Kh, Khujamatov H. (2018) Modeling and research circuits of intelligent sensors and measurement systems with distributed parameters and values. Chemical technology control and management. International Scientific and Technical Journal, 4(5): 50-55.

Aosong Electronics Co., Ltd. Digital-output relative humidity & temperature sensor/module DHT22 (also named as AM2302), DHT22 datasheet.

Arsheen S, Wahid A, Khaleel A, Khujamatov Kh. (2020) Flying Ad hoc Network Expedited by DTN Scenario: Reliable and Cost-effective MAC Protocols Perspective. International Conference Application of Information and Communication Technologies: 7-9 October 2020; Tashkent, Uzbekistan. DOI: https://doi.org/10.1109/AICT50176.2020.9368575

Siddikov IKh, Sattarov KhA, Khujamatov KhE, Dekhkonov OR. (2016) Modeling the processes in magnetic circuits of electromagnetic transdusers. International Conference on Information Science and Communications Technologies: 2-4 November 2016; Tashkent, Uzbekistan.

Downloads

Published

2021-07-04

How to Cite

Khasanov, D., Khujamatov, K., Fayzullaev, B., & Reypnazarov, E. (2021). WSN-BASED MONITORING SYSTEMS FOR THE SOLAR POWER STATIONS OF THE TELECOMMUNICATION DEVICES. IIUM Engineering Journal, 22(2), 98–118. https://doi.org/10.31436/iiumej.v22i2.1464

Issue

Section

Electrical, Computer and Communications Engineering