INFLUENCE OF FIBREGLASS MESH ON PHYSICAL PROPERTIES OF LIGHTWEIGHT FOAMCRETE
DOI:
https://doi.org/10.31436/iiumej.v22i1.1446Keywords:
Foamed concrete, durability, fibremesh, confinement, textile fabricAbstract
This research project was designed to investigate the influence of fibremesh on the durability properties of lightweight foamcrete (LFC). The fibremesh, categorized as a synthetic fibre (man-made fibre), was used for this study. It poses a continuous fibre with warp and weft structure that was used as confinement material in this investigation where four different weights per area (g/m2) of the fibremesh were observed namely, 110 g, 130 g, 145 g, and 160 g. Three experimental tests were involved in this preliminary study: porosity, water absorption, and drying shrinkage test. All the specimens were confined with 1-layer fibremesh at a constant density of 1100kg/m3 of LFC and the result was compared with the control (unconfined LFC). The 160 g/m2 of fibremesh significantly improved the physical properties of LFC where 13.8%, 20%, and 57.4% enhancement was obtained for the porosity, water absorption, and drying shrinkage result, respectively.
ABSTRAK: Projek penyelidikan ini dijalankan bagi menyiasat kesan pengunaan jejaring sabut pada sifat ketahanan konkrit ringan berbusa (LFC). Jejaring sabut yang digunakan dalam kajian ini adalah jejaring gentian kaca tahan-alkali yang dikategorikan sebagai serat sintetik yang juga dikenali sebagai fabrik tekstil. Ia mempunyai serat yang panjang dan bersambung dengan struktur yang lekuk dan renda yang digunakan sebagai penambahbaikan bagi konkrit ringan berbusa. Terdapat empat berat jejaring sabut yang diuji iaitu 110 g, 130 g, 145 g, dan 160 g. Tiga jenis eksperimen bagi kajian awal ini iaitu keliangan, penyerapan air, dan pengecutan pengeringan. Semua spesimen dibalut dengan 1 lapisan jejaring sabut pada 1100kg/m3 LFC dan data yang diperoleh dibandingkan dengan spesimen yang tidak dibalut dengan gentian kaca berjejaring. Jejaring sabut 160 g/m2 meningkatkan sifat fizikal konkrit ringan berbusa di mana 13.8%, 20%, dan 57.4% peningkatan diperoleh bagi keliangan, penyerapan air, dan pengecutan pengeringan, masing-masing.
Downloads
Metrics
References
Amran YHM, Farzadnia N, Ali AAA. (2015). Properties and applications of foamed concrete; A review. Construction and Building Materials, 101: 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
Fu Y, Wang X, Wang L, Li Y. (2020). Foam Concrete?: A State-of-the-Art and State-of-the-Practice Review. Advances in Materials Science and Engineering. https://doi.org/10.1155/2020/6153602
Moon AS, Varghese V, Waghmare SS. (2015). Foam Concrete as A Green Building Material. International Journal for Research in Emerging Science and Technology, 2(9): 25-32.
Siram KKB, Raj KA. (2013). Concrete + Green = Foam Concrete. International Journal of Civil Engineering and Technology (IJCIET), 2(2): 1-24.
Sari KAM, Sani ARM. (2017). Applications of Foamed Lightweight Concrete. MATEC Web of Conferences, 97: 1-5. https://doi.org/10.1051/matecconf/20179701097
Jalal MD, Tanveer A, Jagdeesh K, Ahmed F. (2017). Foam concrete. International Journal of Civil Engineering Research, 8(1): 1-14. Retrieved from https://www.ripublication.com/ijcer17/ijcerv8n1_01.pdf
Hedjazi S. (2019). Compressive Strength of Lightweight Concrete. In IntechOpen:1-18. https://doi.org/10.5772/intechopen.88057
Shabbar R, Nedwell P, Wu Z. (2018). Porosity and Water Absorption of Aerated Concrete with Varying Aluminium Powder Content. International Journal of Engineering and Technology, 10(3): 234-238. https://doi.org/10.7763/ijet.2018.v10.1065
Kurpi?ska M, Ferenc T. (2017). Effect of porosity on physical properties of lightweight cement composite with foamed glass aggregate. ITM Web of Conferences, 15: 06005. https://doi.org/10.1051/itmconf/20171506005
Hilal AA, Thom NH, Dawson AR. (2014). Pore structure and permeation characteristics of foamed concrete. Journal of Advanced Concrete Technology, 12: 535-544. https://doi.org/10.3151/jact.12.535
Thakrele MH. (2014). Experimental study on foam concrete. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 4(1): 145-158.
Elrahman MA, El Madawy ME, Chung SY, Sikora P, Stephan D. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences (Switzerland), 9(7): 1-12. https://doi.org/10.3390/app9071447
Rai A, Kumar M (2017). Experimental Study on Compressive and Split Tensile Strength of Foamed Concrete Using Stone Dust. International Research Journal of Engineering and Technology(IRJET), 4(5): 1377-1382. Retrieved from https://www.irjet.net/archives/V4/i5/IRJET-V4I5269.pdf
Dhanunjaya G, Dadapeer ABS, Rafi DM. (2018). An Experimental Study on the Durability Properties of Foam Concrete with Addition of Natural Fibers. International Journal of Scientific Research in Science and Technology, 4(2): 529-536.
Awang H, Ahmad MH. (2014). Durability Properties of Foamed Concrete with Fiber Inclusion. International Journal of Civil, Structural, Construction and Architectural Engineering, 8(3): 273-276.
Hanizam A, Mohammed A, Ahmad MH. (2015). Influence of Kenaf and Polypropylene Fibres on Mechanical and Durability Properties of Fibre Reinforced Lightweight Foamed Concrete. Journal of Engineering Scinece and Technology, 10(4): 496-508. https://doi.org/10.4028/www.scientific.net/AMR.626.404
Mahzabin MS, Hock LJ, Hossain MS, Kang LS. (2018). The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Construction and Building Materials, 178: 518-528.
Musa M. (2019). Investigation of Durability, Thermal and Mechanical Properties of Oil Palm Empty Fruit Bunch (EFB) Fibre Strengthen Lightweight Foamed Mortar (LFM). Master thesis. Universiti Sains Malaysia.
Bentur A, Mindess S. (2007). Fibre Reinforced Cementitious Composites. In A. Bentur & S. Mindess (Eds.), Taylor & Francis (2nd Edition). https://doi.org/10.1016/0010-4361(79)90446-4
Memon IA, Jhatial AA, Sohu S, Lakhiar MT, Hussain Z. (2018). Influence of Fibre Length on the Behaviour of Polypropylene Fibre Reinforced Cement Concrete. Civil Engineering Journal, 4(9): 2124-2131. https://doi.org/10.28991/cej-03091144
ASTM C150-04 (2004). Standard Specification for Portland Cement C150-04. Annual Book of ASTM Standards, 4(2): 1-8.
ASTM C778-06 (2006). Standard Specification for Standard Sand C778-06. Annual Book of ASTM Standards. Retrieved from http://www.who.int/csr/don/03-june-2016-oropouche-peru/en/
ASTM C1602-C05 (2006). Standard Specification for Mixing Water Used in Production of Hydraulic Cement Concrete C1602. Annual Book of ASTM Standards.
Talaei S, Jafari M, Tarfan S, Hashemlou H. (2014). The Effect of Ratio of Aggregate to Cement Paste Volume on Structural Lightweight Concrete Strength , Viscosity , Density and Cost. Research Journal of Environmental and Earth Sciences, 6(9): 443-450.
Coker EB, Sadiku S, Aguwa JI, Abdullahi M. (2016). Study of the Strength Characteristics of Protein-Based Lightweight Foamed Concrete With Cement Partially Replaced With Rice Husk Ash. Nigerian Journal of Technology, 35(4): 699-706. https://doi.org/10.4314/njt.v35i4.2
Suhaili SS, Mydin MAO. (2020). Potential of stalk and spikelets of empty fruit bunch fibres on mechanical properties of lightweight foamed concrete. International Journal of Scientific and Technology Research, 9(3): 3199-3204.
Zamzani NM. (2019). Characterization of durability and engineering properties of Cocos nucifera Linn Fibre (CNF) reinforced foamcrete and its performance at elevated temperatures. Master thesis. Universiti Sains Malaysia.
Zulkarnain F. (2011). Strength and Durability Properties of Lightweight Foamed Concrete For Housing Construction. Master thesis. Universiti Sains Malaysia.
BS 1881-122 (2011). Testing Concrete Part 122 Method for determination of water absoprtion BS1881-122. British Standard Institution. https://doi.org/10.1017/CBO9781107415324.004
RILEM (1984). Absorption of water by concrete by immersion under vacuum. In RILEM (Ed.), RILEM Recommendations for the Testing and Use of Constructions Materials: 36-37. https://doi.org/doi: 10.1617/2351580117.018
ASTM C157/C157M (2005). Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. Annual Book of ASTM Standards: 1-10.
Cheah CB, Lim JS, Ramli MB. (2019). The mechanical strength and durability properties of ternary blended cementitious composites containing granite quarry dust (GQD) as natural sand replacement. Construction and Building Materials, 197(November 2018): 291-306. https://doi.org/10.1016/j.conbuildmat.2018.11.194
Jung CT, Kwong T H, Boon KH. (2018). Water absorption and drying shrinkage of recycled foamed aggregate concrete. Malaysian Journal of Civil Engineering, 30(3): 482-492.
Falliano D, De Domenico D, Ricciardi G, Gugliandolo E. (2019). Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Construction and Building Materials, 198: 479-493. https://doi.org/10.1016/j.conbuildmat.2018.11.197
Namsone E, Korjakins A, Sahmenko G, Sinka M. (2017). The environmental impacts of foamed concrete production and exploitation. IOP Conference Series: Materials Science and Engineering, 251(1). https://doi.org/10.1088/1757-899X/251/1/012029
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 IIUM Press
This work is licensed under a Creative Commons Attribution 4.0 International License.