GRAPHENE OXIDE MICROCAPSULES (GOMs) WITH LINSEED OIL CORE VIA PICKERING EMULSION METHOD: EFFECT OF DISPERSE SPEED

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1426

Keywords:

graphene oxide, Pickering emulsion, linseed oil, microcapsules

Abstract

Graphene oxide microcapsules (GOMs) have been prepared through Pickering emulsion method by varying the disperse speed to study its effect on the GOM’s size. The GOMs were characterized through phase separation observation, polarized optical microscope (POM), and particle size analyser (PSA). Phase separation observation showed more viscous and cloudy emulsion was produced when the disperse speed was increased. After 24 hours, only 800 rpm emulsion did not show any phase separation. POM characterization depicted that increasing the emulsification energy led to the finer emulsion with the 1200 rpm sample showing the smallest microcapsule size of around 8 ?m. However, PSA analysis suggested that although the disperse speed controls the GOMs size, the amount of GO in the emulsion plays an important role for the microcapsule to maintain its stability. Emulsion produced at 800 rpm possesses satisfactory stability with GOMs diameter of 11.15 ?m. The result also suggested that graphene oxide encapsulated linseed oil may act as a promising candidate for healing microcapsules in a self-healing coating system.

ABSTRAK: Mikrokapsul graphene oksida (GOMs) telah dihasilkan melalui kaedah emulsifikasi Pickering dengan memvariasikan tenaga pengemulsi untuk mengkaji kesannya terhadap saiz GOMs. GOMs dicirikan melalui pemerhatian pemisahan fasa, mikroskop optik polarisasi (POM) dan penganalisis saiz zarah (PSA). Pemerhatian pemisahan fasa menunjukkan emulsi yang lebih likat dan keruh dihasilkan apabila kelajuan pengemulsi meningkat. Selepas 24 jam, hanya emulsi 800 rpm tidak menunjukkan pemisahan fasa. Pencirian POM meunjukkan bahawa peningkatan tenaga pengemulsi menghasilkan emulsi yang lebih halus dengan sampel 1200 rpm menunjukkan saiz mikrokapsul terkecil, sekitar 8 ?m. Walau bagaimanapun, analisis PSA mencadangkan bahawa walaupun kelajuan pengemulsi mengawal saiz GOMs, jumlah GO dalam emulsi memainkan peranan penting untuk mengekalkan kestabilan mikrokapsul. Emulsi yang dihasilkan pada 800 rpm mempunyai kestabilan yang memuaskan dengan purata saiz GOMs sekitar 11.15 ?m. Berdasarkan dapatan kajian, graphene oksida yang terkandung minyak biji rami boleh menjadi salah satu mikrokapsul penyembuh dalam sistem cat auto-sembuh.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Shao, JJ, Lv W, Yang QH. (2014) Self?assembly of graphene oxide at interfaces. Advanced Materials, 26(32): 5586-5612.

Wu J, Huang G, Li H, Wu S, Liu Y, Zheng J. (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer, 54(7): 1930-1937.

Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM. (2016) Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corrosion Science, 103: 283-304.

Bandyopadhyay P, Park WB, Layek RK, Uddin ME, Kim NH, Kim HG, Lee JH. (2016) Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film. Journal of Membrane Science, 500: 106-114.

Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K. (2016). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Applied Materials & Interfaces, 8(9): 6211-6218.

Di H, Yu Z, Ma Y, Li F, Lv L, Pan Y, Lin Y, Liu Y, He Y. (2016) Graphene oxide decorated with Fe3O4 nanoparticles with advanced anticorrosive properties of epoxy coatings. Journal of the Taiwan Institute of Chemical Engineers, 64: 244-251.

Ammar A, Al-Enizi AM, AlMaadeed MA, Karim A. (2016) Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes. Arabian Journal of Chemistry, 9(2): 274-286.

Wang B, Liu J, Zhao Y, Li Y, Xian W, Amjadipour M, MacLeod J, Motta N. (2016) Role of graphene oxide liquid crystals in hydrothermal reduction and supercapacitor performance. ACS Applied Materials & Interfaces, 8(34): 22316-22323.

Choi SJ, Yu H, Jang JS, Kim MH, Kim SJ, Jeong HS, Kim ID. (2018) Nitrogen?Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor. Small, 14(13): 1703934.

Shen TZ, Hong SH, Song JK. (2014) Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nature Materials, 13(4): 394-399.

Oh JH, Kim J, Lee H, Kang Y, Oh IK. (2018) Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber. ACS Applied Materials & Interfaces, 10(26): 22650-22660.

Narayan R, Kim JE, Kim JY, Lee KE, Kim SO. (2016) Graphene oxide liquid crystals: discovery, evolution and applications. Advanced Materials, 28(16): 3045-3068.

Abedin MJ, Gamot, TD, Martin ST, Ali M, Hassan KI, Mirshekarloo MS, Majumder M. (2019) Graphene Oxide Liquid Crystal Domains: Quantification and Role in Tailoring Viscoelastic Behavior. ACS Nano, 13(8): 8957-8969.

Jalili R, Aboutalebi SH, Esrafilzadeh D, Konstantinov K, Moulton SE, Razal JM, Wallace GG. (2013) Organic solvent-based graphene oxide liquid crystals: A facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano, 7(5): 3981-3990.

Chevalier Y, Bolzinger MA, Briançon S. (2015) Pickering emulsions for controlled drug delivery to the skin. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement (pp. 267-281). Springer, Berlin, Heidelberg.

Wu J, Ma GH. (2016) Recent studies of Pickering emulsions: particles make the difference. Small, 12(34): 4633-4648.

Teo GH, Ng YH, Zetterlund PB, Thickett SC. (2015) Factors influencing the preparation of hollow polymer-graphene oxide microcapsules via Pickering miniemulsion polymerization. Polymer, 63: 1-9.

Ullah H, Azizli, KA, Man ZB, Ismail MBC, Khan MI. (2016) The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: A review. Polymer Reviews, 56(3): 429-485.

Montemor MF. (Ed.) (2015). Smart composite coatings and membranes: Transport, structural, environmental and energy applications. Elsevier.

Hughes AE, Mol JM, Zheludkevich ML, Buchheit RG. (2016) Active protective coatings. Active Protective Coatings: New-Generation Coatings for Metals, Springer Series in Materials Science, vol. 233. ISBN 978-94-017-7538-0. Springer Science+ Business Media Dordrecht.

Çömlekçi GK, Ulutan S. (2019) Acquired self-healing ability of an epoxy coating through microcapsules having linseed oil and its alkyd. Progress in Organic Coatings, 129: 292-299.

Abbaspoor S, Ashrafi A, Abolfarsi R. (2019) Development of self-healing coatings based on ethyl cellulose micro/nano-capsules. Surface Engineering, 35(3): 273-280.

Navarchian AH, Najafipoor N, Ahangaran F. (2019) Surface-modified poly (methyl methacrylate) microcapsules containing linseed oil for application in self-healing epoxy-based coatings. Progress in Organic Coatings, 132: 288-297.

Li J, Feng Q, Cui J, Yuan Q, Qiu H, Gao S, Yang J. (2017) Self-assembled graphene oxide microcapsules in Pickering emulsions for self-healing waterborne polyurethane coatings. Composites Science and Technology, 151: 282-290.

Afshar Ghotli R, Raman AA, Ibrahim S, Baroutian S. (2013) Liquid-liquid mixing in stirred vessels: A review. Chemical Engineering Communications, 200(5): 595-627.

Yamashita Y, Miyahara R, Sakamoto K. (2017) Emulsion and emulsification technology in Cosmetic Science and Technology (1st edition), Elsevier, pp 489-506.

Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. (2010) Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 132(23): 8180-8186.

Thompson DG, Taylor AS, Graham DE. (1985) Emulsification and demulsification related to crude oil production. Colloids and Surfaces, 15: 175-189.

Gohtani S, Yoshii H. (2018) Microstructure, composition, and their relationship with emulsion stability. In Food Microstructure and Its Relationship with Quality and Stability (pp. 97-122). Woodhead Publishing.

Lapointe CP, Mason TG, Smalyukh, II. (2009) Shape-controlled colloidal interactions in nematic liquid crystals. Science, 326(5956): 1083-1086.

Wan W, Zhao Z, Hughes TC, Qian B, Peng S, Hao X, Qiu J. (2015) Graphene oxide liquid crystal Pickering emulsions and their assemblies. Carbon, 85: 16-23.

Andrienko,D. (2018) Introduction to liquid crystals. Journal of Molecular Liquids, 267: 520-541.

Panda D, Nandi A, Datta SK, Saha H, Majumdar S. (2016) Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature. RSC advances, 6(53): 47337-47348.

Low LE, Wong SK, Tang SY, Chew CL, De Silva HA, Lee JMV, Hoo CH, Kenrick K. (2019) Production of highly uniform Pickering emulsions by novel high-intensity ultrasonic tubular reactor (HUTR). Ultrasonics sonochemistry, 54: 121-128.

Chevalier Y, Bolzinger MA. (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439: 23-34.

Borisova D, Akçakay?ran D, Schenderlein M, Möhwald H, Shchukin DG. (2013) Nanocontainer?Based Anticorrosive Coatings: Effect of the Container Size on the Self?Healing Performance. Advanced Functional Materials, 23(30): 3799-3812.

Tsabet E, Fradette L. (2015) Effect of processing parameters on the production of Pickering emulsions. Industrial & Engineering Chemistry Research, 54(7): 2227-2236.

Downloads

Published

2020-01-04

How to Cite

Sahir, N. N., Hassan, N. A. ., Hassan, N. B. ., & Johari, N. B. . (2020). GRAPHENE OXIDE MICROCAPSULES (GOMs) WITH LINSEED OIL CORE VIA PICKERING EMULSION METHOD: EFFECT OF DISPERSE SPEED. IIUM Engineering Journal, 22(1), 213–222. https://doi.org/10.31436/iiumej.v22i1.1426

Issue

Section

Materials and Manufacturing Engineering