# RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION

## Authors

• Othman Mahdi Salih University of Baghdad, Baghdad
• Majeed AL-Jawary Department of mathematics, college of education for pure sciences (Ibn AL-Haitham) / University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0003-3967-0012

## Keywords:

Fisher’s equation, Iterative methods, Exact solution, Numerical solutions and Maximum error remainder

## Abstract

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12.

ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.

### Downloads

Download data is not yet available.

### Metrics

Metrics Loading ...

## References

Akyildiz FT, Siginer DA, Vajravelu K, Van Gorder RA. (2010) Analytical and numerical results for the Swift–Hohenberg equation. Applied Mathematics and Computation, 216(1):221-226.

Al-Jawary MA. (2017) A semi-analytical iterative method for solving nonlinear thin film flow problems. Chaos, Solitons & Fractals, 99:52-56.

Al-Jawary MA, Azeez MM, Radhi GH. (2018) Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method. Computers & Mathematics with Applications, 76(1):155-171.

Sahib AAA, Hasan SQ. (2014) Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations. Baghdad Science Journal, 11(4):1637-1648.

Al-Hawasy JAA, Al-Rawdanee EH. (2019) Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method. Ibn AL-Haitham Journal For Pure and Applied Science, 32(2):71-80.

Gorial II. (2011) Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter. Ibn AL-Haitham Journal For Pure and Applied Science, 24(2).

Mittal RC, Arora G. (2010) Efficient numerical solution of Fisher's equation by using B-spline method. International Journal of Computer Mathematics, 87(13):3039-3051.

Matinfar M, Ghanbari M. (2009) The application of the modified variational iteration method on the generalized Fisher’s equation. Journal of Applied Mathematics and Computing, 31(1-2):165-175.

Verma A, Jiwari R, Koksal ME. (2014) Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions. Advances in Difference Equations, 2014(1):229.

Tyson JJ, Brazhnik PK. (2000) On traveling wave solutions of Fisher's equation in two spatial dimensions. SIAM Journal on Applied Mathematics, 60(2):371-391.

Roessler J, Hüssner H. (1997) Numerical solution of the 1+ 2 dimensional Fisher's equation by finite elements and the Galerkin method. Mathematical and Computer Modelling, 25(3):57-67.

A??rseven D, Özi? T. (2010) An analytical study for Fisher type equations by using homotopy perturbation method. Computers & Mathematics with Applications, 60(3):602-609.

Rehman YU, Yaqub M, Ul-Hassan QM, Ayub K, Siddiqa A. (2017) Solving Fisher’s Equation by Using Modified Variational Iteration Method. American Journal of Engineering, Technology and Society, 4(5):74.

Al-Khaled K. (2001) Numerical study of Fisher's reaction–diffusion equation by the Sinc collocation method. Journal of Computational and Applied Mathematics, 137(2):245-255.

Wazwaz AM, Gorguis A. (2004) An analytic study of Fisher's equation by using Adomian decomposition method. Applied Mathematics and Computation, 154(3):609-620.

Parand K, Nikarya M. (2017) A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods. The European Physical Journal Plus, 132(11):496.

Daftardar-Gejji V, Jafari H. (2006) An iterative method for solving nonlinear functional equations. Journal of Mathematical Analysis and Applications, 316(2):753-763.

Temimi H, Ansari AR. (2011) A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2):203-210.

Daftardar-Gejji V, Bhalekar S. (2009) Solving nonlinear functional equation using Banach contraction principle. Far East Journal of Applied Mathematics, 34(3):303-314.

Al-Jawary MA, Adwan MI, Radhi GH. (2018) Three iterative methods for solving second order nonlinear ODEs arising in physics. Journal of King Saud University-Science, 23(1):312-323.

AL-Jawary MA, Radhi GH, Ravnik J. (2018) Daftardar-Jafari method for solving nonlinear thin film flow problem. Arab Journal of Basic and Applied Sciences, 25(1):20-27.

Al-Jawary MA, Raham RK. (2017) A semi-analytical iterative technique for solving chemistry problems. Journal of King Saud University-Science, 29(3):320-332.

Al-Jawary MA, Radhi GH, Ravnik J. (2017) Semi-analytical method for solving Fokker-Planck’s equations. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24:254-262.

AL-Jawary MA. (2016) An efficient iterative method for solving the Fokker–Planck equation. Results in Physics, 6:985–991.

Abdul Nabi AJ, AL-Jawary MA. (2018) Analytical and Numerical Solutions for the Linear and Nonlinear 1D, 2D and 3D Telegraph Equations. Journal of Advanced Research in Dynamical and Control Systems, 10(10-Special):2090-2105.

Mitlif RJ. (2014) New Iterative Method for Solving Nonlinear Equations. Baghdad Science Journal, 11(4):1649-1654.

Daftardar-Gejji V, Bhalekar S. (2010) Solving fractional boundary value problems with Dirichlet boundary conditions using a new iterative method. Computers & Mathematics with Applications, 59(5):1801-1809.

Temimi H, Ansari AR. (2011) A new iterative technique for solving nonlinear second order multi-point boundary value problems. Applied Mathematics and Computation, 218(4):1457-1466.

Odibat ZM. (2010) A study on the convergence of variational iteration method. Mathematical and Computer Modelling, 51(9-10):1181-1192.

Mittal RC, Kumar S. (2006) Numerical study of Fisher's equation by wavelet Galerkin method. International Journal of Computer Mathematics, 83(3):287-298.

Mavoungou T, Cherruault Y. (1994) Numerical study of Fisher's equation by Adomian's method. Mathematical and computer modelling, 19(1):89-95.

2020-01-04

## How to Cite

Salih, O. M., & AL-Jawary, M. (2020). RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION . IIUM Engineering Journal, 22(1), 138–166. https://doi.org/10.31436/iiumej.v22i1.1413

## Section

Engineering Mathematics and Applied Science  