analytical solution, 1-D pseudo-homogeneous model, reverse flow reactor, homotopy analysis method


Methane (CH4) is one of the most dangerous greenhouse gases in the atmosphere. A reverse flow reactor is utilized to convert CH4 to carbon dioxide (CO2) as a means of reducing the effect of global warming. The dynamics of its dependent variables can be stated by a set of convective-diffusion equations. In this article, we examined analytical solutions of temperature dynamics and methane conversion for a 1-D pseudo homogeneous model without refrigeration by using the homotopy analysis method. The results show that temperature and conversion of methane will go to constant when time goes to infinity.

ABSTRAK: Metana (CH4) merupakan salah satu gas rumah hijau paling berbahaya di atmosfera. Reaktor aliran balik telah dipakai bagi menukar CH4 kepada CO2 bagi mengurangkan kesan pemanasan global. Dinamik pemboleh ubah bersandar ini dapat diterangkan melalui satu set persamaan konvektif-difusi. Artikel ini akan mengkaji penyelesaian analisis dinamik suhu dan penukaran metana bagi model 1-D pseudo-homogen tanpa penyejukan dengan menggunakan kaedah analisis homotopi. Hasil kajian menunjukkan bahawa suhu dan penukaran metana akan berterusan dengan masa tak terhingga.


Download data is not yet available.


Metrics Loading ...


Frank-Kamenetskii DA. (1955) Diffusion and Heat Transfer in Chemical Kinetics. Princeton Univ. Press, Princeton, NJ.

Matros Yu. Sh., Bunimovich GA. (1999) Reverse-flow operation in fixed bed catalytic reactors. Catalysis Reviews: Science & Engineering, 38: 1-68.

Khinast J, Jeong YO, Luss D. (1999). Dependence of Cooled Reverse-Flow Reactor Dynamics on Reactor Model. A.I.Ch.E. Journal, 45: 299-309.

Van Noorden TL, Verduyn Lunel SMV, Bliek A. (2003) The efficient computation of periodic states of cyclically operated chemical processes. IMA Journal of Applied Mathematics, 68: 149-166.

Nuryaman A, Riyanto R, Saidi S. (2019) Dynamics of Temperature and Concentration on Oxidation Reactionusing Reverse Flow Reactor with Periodic Feed Gas Like Square Wave Function: a Numerical Approach. J. of Phys.: Conf. Ser., 1338: 012040.

Nuryaman A, Zakaria L, Suharsono S. (2020) Parameter Sensitivity Analysis onMathematical Model of Methane Oxidation using Reverse Flow Reactor with Periodically Perturbed Feed Gas. JP Journal of Heat and Mass Transfer, 19(1): 31-42. ISSN 0973-5763.

Nuryaman A, Gunawan AY, Sidarto AS, Budhi YW. (2012) A Singular Perturbation Problem for Steady State Conversion of Methane Oxidation in a Reserve Flow Reactor. ITB J. Sci., 44(3): 275-284. DOI number 10.5614/itbj.sci.2012.44.3.7

Nuryaman A, Gunawan AY. (2017) A Singular Perturbation Problem in Steady State of Methane Combustion using Reverse Flow Reactor. Far East Journal of Mathematical Sciences, 102(9): 2069-2079.

Nuryaman A. (2018) An Analytical Solution of 1-D Pseudo homogeneous Model for Oxidation Reaction using Homotopy Perturbation Methods. Journal of Research in Mathematics Trend and Technology, 1: 7-12.

Sami BatainehA, Noorani MSM, Hashim, I. (2008). Approximate Analytical Solutions of Systems of PDEs by Homotopy Analysis Method. Computers and Mathematics with Applications, 55: 2913-2923.

Liao SJ. (2012). Homotopy Analysis Method in Nonlinear Differential Equation. HigherEducation Press, Beijing.

Liao SJ. (1992). The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. dissertation, Shanghai Jiao Tongroblem University, Shanghai. (in English).

Liao SJ. (1997). An Approximate solution technique which does not depend upon small parameters (Part 2): An application in fluid dynamics. Internat. J. Non-Linear Mech. 32: 815-822.




How to Cite

Suharsono, S., Wulandari, S. ., Nuryaman, A. ., Usman, M., Wamiliana, W., & Daoud, J. (2020). SOLUTION OF THE REVERSE FLOW REACTOR MODEL USING HOMOTOPY ANALYSIS METHOD. IIUM Engineering Journal, 22(1), 129–137.



Engineering Mathematics and Applied Science

Most read articles by the same author(s)