PASSIVELY Q-SWITCHED YTTERBIUM-DOPED FIBER LASER EMPLOYING SAMARIUM OXIDE AS SATURABLE ABSORBER

Authors

DOI:

https://doi.org/10.31436/iiumej.v22i1.1396

Keywords:

Q-switched; Ytterbium-doped fiber pulse laser; Samarium oxide thin film; Saturable absorber.

Abstract

The rapid developments in transition metal dichalcogenide materials as a saturable absorber (SAs) have been demonstrated to be an effective method for generating Q-switched fiber laser. This work, reports on the generation of Q-switched fiber laser in the 1-micron region using samarium oxide (Sm2O3) saturable absorber (SA). The Sm2O3 thin film SA was fabricated in-

The rapid developments in transition metal dichalcogenide materials as saturable absorbers (SAs) have been reported to be efficient materials for generating Q?switched fiber lasers. In this paper, we report on the use of samarium oxide (Sm2O3) saturable absorber (SA) for 1-micron Q-switched fiber laser generation. The Sm2O3 thin film SA was constructed in-house through which the Sm2O3 powder was mixed and stirred in polyvinyl alcohol (PVA) solution. It was then integrated into the ytterbium-doped fiber laser (YDFL) ring cavity, hence producing a sequence of Q-switched pulsed lasers at 1062.49 nm wavelength. The stable pulse train appeared from 69.97 to 111.1 kHz between the applied pump power of 57 mW to 96 mW. The signal-to-noise ratio (SNR) of 38.56 dB was recorded at the 57 mW pump power, whereas the pulse energy raised until 15.21 nJ at 96 mW. These results showed that the Sm2O3 could be a favourable SA material to iniatiate Q-switched ytterbium-doped pulsed fiber laser.

ABSTRAK: Perkembangan pesat dalam bahan logam peralihan dichalcogenide sebagai bahan penyerap boleh larut (SAs) telah dilaporkan sebagai kaedah yang berkesan bagi menjana laser fiber Q-switched. Kajian ini menggunakan samarium oksida (Sm2O3) saturable absorber (SA) bagi menjana laser gentian Q-switched 1-Micron. Filem nipis Sm2O3 SA telah dihasilkan melalui campuran serbuk Sm2O3 ke dalam cecair polivinil alkohol (PVA) dalam persekitaran makmal. Kemudian, ia diintegrasi ke dalam rongga gelang laser gentian dop-ytterbium (YDFL), lalu menghasilkan denyut laser Q-switched stabil pada jarak gelombang 1062.49 nm. Denyutan stabil muncul dari 69.97 kepada 111.1 kHz pada kuasa pam yang dikenakan antara 57 mW hingga 96 mW. Nisbah isyarat-hinggar (SNR) pada 38.56 dB telah direkodkan pada pam kuasa 57 mW, sementara denyut tenaga ditingkatkan kepada 15.21 nJ pada 96 mW. Keputusan menunjukkan Sm2O3 merupakan bahan SA penggalak yang memuaskan bagi menjana denyut laser gentian dop-ytterbium Q-switched.

house. It was integrated into the ytterbium-doped fiber laser (YDFL) ring cavity, hence producing a stable passively Q-switched laser operating at 1062.49 nm wavelength. Stable pulse train appeared from 69.97 to 111.1 kHz at the tunable pump power of 57 mW to 96 mW. The pulse energy of up to 15.21 nJ and signal-to-noise ratio (SNR) of 38.56 dB for the fundamental frequency were recorded. The results showed that the Sm2O3 could be a favourable SA material for the broadband generation of Q-switched fiber laser.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Raimondi MT, Eaton SM, Nava MM, Laganà M, Cerullo G, Osellame R, (2012). Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine. Journal of Applied Biomaterials & Functional Materials, 10(1): 56-66.

Shih PT, Chen J, Lin CT, Jiang WJ, Huang HS, Peng PC, Chi S, (2009). Optical millimeter-wave signal generation via frequency 12-tupling. Journal of Lightwave Technology, 28(1): 71-78.

Hodge C, McAlinden C, Lawless M, Chan C, Sutton G, Martin A (2015). Intraocular lens power calculation following laser refractive surgery. Eye and Vision, 2(1): 7.

Masket S, Masket SE. (2006). Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. Journal of Cataract & Refractive Surgery, 32(3): 430-434.

Walsh BM, Lee HR, Barnes NP. (2016). Mid infrared lasers for remote sensing applications. Journal of Luminescence, 169: 400-405.

Al-Masoodi AH, Ahmed MH, Latiff AA, Azzuhri SR, Arof H, Harun SW. (2017). Passively mode-locked ytterbium-doped fiber laser operation with few layer MoS2 PVA saturable absorber. Optik, 145: 543-548.

Kuznetsov AG, Podivilov EV, Babin SA. (2015). Actively Q-switched Raman fiber laser. Laser Physics Letters, 12(3): 035102.

Keller U (2003). Recent developments in compact ultrafast lasers. Nature, 424(6950): 831-838.

Hu P, Liu F, Huang Y, Liu Y, Han K, Zhang F, Liu X. (2019). Passively Q-switched ytterbium-doped fiber laser operating at 1120 nm by molybdenum disulfide saturable absorber. Optik, 189: 97-102.

Liu W, Liu M, Han H, Fang S, Teng H, Lei M, Wei Z .(2018). Nonlinear optical properties of WSe 2 and MoSe 2 films and their applications in passively Q-switched erbium doped fiber lasers. Photonics Research, 6(10): C15-C21.

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11): 699.

Aiub EJ, Steinberg D, de Souza EA, Saito LA. (2017). 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS 2 saturable absorber onto D-shaped optical fiber. Optics Express, 25(9): 10546-10552.

Khazaeinezhad R, Kassani SH, Jeong H, Yeom DI, Oh K. (2015). Femtosecond soliton pulse generation using evanescent field interaction through Tungsten disulfide (WS 2) film. Journal of Lightwave Technology, 33(17): 3550-3557.

Al-Masoodi AH, Yasin M, Ahmed MH, Latiff AA, Arof H, Harun SW. (2017). Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber. Optik, 147: 52-58.

Hisyam MB, Rusdi MF, Latiff AA, Harun SW. (2016). Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE Journal of Selected Topics in Quantum Electronics, 23(1): 39-43.

Li S, Yin Y, Lewis E, Garrell G, Wang P. (2019). A twelve-wavelength Thulium-doped fibre laser based on a microfibre coil resonator incorporating black phosphorus. Optics Communications, 437: 342-345.

Island JO, Steele GA, van der Zant HS, Castellanos-Gomez A. (2015). Environmental instability of few-layer black phosphorus. 2D Materials, 2(1): 011002.

Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J, Weng J, Xu S, Zhu C, Wang F, Sun Z. (2016). Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale, 8(2): 1066-1072.

Pask HM, Carman RJ, Hanna DC, Tropper AC, Mackechnie CJ, Barber PR, Dawes JM. (1995). Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2/spl mu/m region. IEEE Journal of Selected Topics in Quantum Electronics, 1(1): 2-13.

Kurkov AS. (2006). Oscillation spectral range of Yb-doped fiber lasers. Laser Physics Letters, 4(2): 93.

Paschotta R, Nilsson J, Tropper AC, Hanna DC. (1997). Ytterbium-doped fiber amplifiers. IEEE Journal of Quantum Electronics, 33(7): 1049-1056.

Yu H, Wang X, Tao R, Zhou P, Chen J. (2014). 1.5 kW, near-diffraction-limited, high-efficiency, single-end-pumped all-fiber-integrated laser oscillator. Applied Optics, 53(34): 8055-80599.

Yan P, Yin S, He J, Fu C, Wang Y, Gong M. (2011). 1.1-kW ytterbium monolithic fiber laser with assembled end-pump scheme to couple high brightness single emitters. IEEE Photonics Technology Letters, 23(11): 697-699.

Jeong YE, Sahu JK, Payne DN, Nilsson J. (2004). Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Optics express, 12(25):6088-6092.

Muhammad AR, Haris H, Arof H, Tan SJ, Ahmad MT, Harun SW. (2018). All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber. Journal of Modern Optics, 65(8): 946-950.

Zhang H, Lu SB, Zheng J, Du J, Wen SC, Tang DY, Loh KP. (2014). Molybdenum disulfide (MoS 2) as a broadband saturable absorber for ultra-fast photonics. Optics express, 22(6):7249-7260.

Das G, Chaboyer ZJ, Navratil JE, Drainville RA. (2015). Passively Q-switched Yb-and Sm-doped fiber laser at 1064 nm. Optics Communications, 334:258-264.

Preda CE, Ravet G, Mégret P. (2012). Experimental demonstration of a passive all-fiber Q-switched erbium-and samarium-doped laser. Optics letters, 37(4):629-631.

Zulkipli NF, Batumalay M, Samsamnun FS, Mahyuddin MB, Hanafi E, Izam TF, Khudus MI, Harun SW. (2019). Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber. Chinese Physics Letters, 36(7):074203.

Dakhel AA. (2004). Dielectric and optical properties of samarium oxide thin films. Journal of Alloys and Compounds, 365(1-2):2 33-239.

Downloads

Published

2020-01-04

How to Cite

Mohd Rusdi, M. K. N. ., Jafry, A. A. A., Zulkifli, N. F. ., Mohamad Samsamnun, F. S., Mahyuddin, M. B. H. ., HARUN, S. W. ., Zainal Abidin, M. S., & Saidin, N. (2020). PASSIVELY Q-SWITCHED YTTERBIUM-DOPED FIBER LASER EMPLOYING SAMARIUM OXIDE AS SATURABLE ABSORBER. IIUM Engineering Journal, 22(1), 58–67. https://doi.org/10.31436/iiumej.v22i1.1396

Issue

Section

Electrical, Computer and Communications Engineering

Most read articles by the same author(s)