DEVELOPMENT OF LOW-COST ADDITIVE MANUFACTURING SYSTEM THROUGH SELECTIVE INHIBITION SINTERING (SIS) PROCESS AND EVALUATION OF MECHANICAL CHARACTERISTICS OF FABRICATED PARTS

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i2.1354

Keywords:

additive manufacturing, selective inhibition sintering, IR heater, tensile strength and flexural strength

Abstract

Additive manufacturing (AM) is widely being used in today’s contemporary industry; however, products fabricated by the existing AM techniques are costly due to the high machine cost and low production rate. Therefore, the focus of this work is to design and fabricate a cost-effective and novel powder based selective inhibition sintering (SIS) system. Various subsystems of the machine such as the infrared heater assembly, inhibition deposition mechanism, build and feed tank assemblies, powder deposition, and the compaction system have been indigenously designed and fabricated. An electronic control system is also established through integrating sensors, linear and rotary actuators, belt and pulley mechanism, and temperature feedback control unit. The customized SIS system is developed by integrating the assembly of all the subsystems, and the electronic modules with an open-source platform to generate the necessary motion characteristics. Besides, an open source RepRap user interface firmware has been used to control the machine. Thermo-structural finite element analysis has been used to study the sintering behaviour of powder material. Inhibitor material selection and preparation have been carried out by performing an experimental investigation on the inhibition effects of various materials. The machine has been tested through fabricating parts from HDPE polymer powder. Finally, the performance of the produced parts has been evaluated by conducting an experimental investigation. The results of the investigation indicated that the fabricated parts have attained sufficient mechanical strength and, hence, the developed SIS system can be utilized to manufacture functional parts.

ABSTRAK: Industri pembuatan bahan tambahan (AM) banyak digunakan dalam industri kontemporari semasa; walau bagaimanapun, produk yang terhasil daripada teknik sedia ada AM adalah mahal disebabkan harga mesin yang mahal dan kadar penghasilan yang rendah. Oleh itu, tujuan kajian ini adalah bagi mereka cipta serbuk baharu dengan harga berpatutan berdasarkan sistem pensinteran rencatan pilihan (SIS). Pelbagai mesin subsistem seperti pemasangan pemanas inframerah, mekanisme pemendapan rencatan, binaan dan pemasangan tangki suapan, deposisi serbuk, dan sistem pemadatan telah direka cipta secara alami dan dipasang siap. Sistem kawalan elektronik juga diadakan melalui integrasi sensor, lelurus dan penggerak putaran, jaluran dan mekanisme takal dan suhu unit kawalan suap balik. Sistem SIS yang dibuat mengikut pesanan ini dihasilkan dengan mengintegrasi pemasangan kesemua subsistem, dan modul elektronik melalui platfom sumber terbuka bagi menghasilkan ciri-ciri pergerakan bersesuaian. Selain itu, sumber terbuka RepRap perisian tegar antara muka telah digunakan bagi mengawal mesin. Analisis unsur terhingga struktur-terma digunakan bagi mempelajari perihal pensinteran bahan serbuk. Pilihan bahan perencat dan persediaan telah dijalankan dengan menjalankan siasatan eksperimen pada kesan perencat pelbagai bahan. Mesin diuji melalui pemasangan bahagian daripada HDPE serbuk polimer. Akhirnya, bahagian yang terhasil diuji melalui ujian eksperimen. Hasil kajian menunjukkan pemasangan bahagian telah mencapai kekuatan mekanikal mencukupi, dengan itu sistem SIS yang dibina boleh digunakan bagi mengilang bahagian berkaitan.

Downloads

Download data is not yet available.

References

Achillas C, Tzetzis D, Raimondo MO. (2017). Alternative production strategies based on the comparison of additive and traditional manufacturing technologies. International Journal of Production Research, 55(12):3497-3509. https://doi.org/10.1080/00207543.2017.1282645

Gardan J. (2016). Additive manufacturing technologies: State of the art and trends. International Journal of Production Research, 54(10):3118-3132. https://doi.org/10.1080/00207543.2015.1115909.

Abdulhameed O, Al-Ahmari A, Ameen W, Mian, SH. (2019). Additive manufacturing: Challenges, trends, and applications. Advances in Mechanical Engineering, 11(2):1-27. https://doi.org/10.1177/1687814018822880.

Krassimir D. (2009). Rapid Prototyping and Engineering Applications: A Toolbox for Prototype Development. Assembly Automation. https://doi.org/10.1108/aa.2009.03329cae.001.

Kruth, JP (1991). Material Incress Manufacturing by Rapid Prototyping Techniques. CIRP Annals - Manufacturing Technology, 40(2):603-614. https://doi.org/10.1016/S0007-8506(07)61136-6.

Khoshnevis B, Asiabanpour B, Mojdeh M, Palmer K. (2003). SIS–a new SFF method based on powder sintering. Rapid Prototyping Journal, 9(1):30-36.

Asiabanpour B, Palmer K, Khoshnevis B. (2004). An experimental study of surface quality and dimensional accuracy for selective inhibition of sintering. Rapid Prototyping Journal, 10(3):181-192.

Asiabanpour B. (2003). An experimental study of factors affecting the selective inhibition of sintering process.

Khoshnevis B, Yoozbashizadeh M, Chen Y. (2012). Metallic part fabrication using selective inhibition sintering (SIS). Rapid Prototyping Journal, 18(2):144-153. https://doi.org/10.1108/13552541211212122

Asiabanpour B, Khoshnevis B, Palmer K. (2006). Advancements in the selective inhibition sintering process development. Virtual and Physical Prototyping, 1(1):43-52.

Aravind A, Siddiqui TN, Arunkumar P, Balasubramanian E. (2017). Comparative Study of High Performance Polymers in Selective Inhibition Sintering Process through Finite Element Analysis. Polymers and Polymer Composites, 25(3):199-202. https://doi.org/10.1177/096739111702500303

Petros M, Torabi P, Khoshnevis B. (2016). The influence of build strategies in selective inhibition sintering (SIS). International Journal of Advanced Manufacturing Technology, 84(5-8):969-979. https://doi.org/10.1007/s00170-015-7766-y

Torabi P, Petros M, Khoshnevis B. (2014). Selective inhibition sintering: the process for consumer metal additive manufacturing. 3D Printing and Additive Manufacturing, 1(3):152-155.

Asiabanpour B, Khoshnevis B, Palmer K, Mojdeh M. (2003). Advancements in the SIS process. 14th International Symposium on Solid Freeform Fabrication, Austin, TX.

Palmer K., Khoshnevis B. (2003). Performance Factors in the Selective Inhibition of Sintering Process. IIE Annual Conference. Proceedings, 1. Institute of Industrial and Systems Engineers (IISE).

Balasubramanian E, Rajamani D, Arunkumar P. (2018). Investigation on dry sliding wear behavior of Selective Inhibition Sintered HDPE parts using simulated annealing algorithm. Materials Today: Proceedings, 5(2):6534-6542. https://doi.org/10.1016/j.matpr.2017.11.308

Baligidad SM, Chandrasekhar U, Elangovan K, Shankar S. (2018). Taguchi’s Approach: Design optimization of process parameters in selective inhibition sintering. Materials Today: Proceedings, 5(2):4778-4786. https://doi.org/10.1016/j.matpr.2017.12.051

Yoozbashizadeh M, Khoshnevis B (2019). The Effects of Sintering Conditions on Selective Inhibition Sintering Process for Bronze. 3D Printing and Additive Manufacturing, 6(5):262-271.

Rajamani D, Balasubramanian E, Arunkumar P, Silambarasan M, Bhuvaneshwaran G. (2018). Experimental Investigations and Parametric Optimization of Process Parameters on Shrinkage Characteristics of Selective Inhibition Sintered High Density Polyethylene Parts. Experimental Techniques, 42(6):631-644. https://doi.org/10.1007/s40799-018-0286-6

Rajamani D, Ziout A, Balasubramanian E, Velu R, Sachin S, Mohamed H. (2018). Prediction and analysis of surface roughness in selective inhibition sintered high-density polyethylene parts: A parametric approach using response surface methodology–grey relational analysis. Advances in Mechanical Engineering, 10(12). 168781401882099. https://doi.org/10.1177/1687814018820994

Bhuvaneshwaran G, Sisay M, Manivannan R, Arunkumar P, Silambarasan M. (2019). Development of inhibition system for SIS process. Lecture Notes in Mechanical Engineering, 383-389. https://doi.org/10.1007/978-981-13-2697-4_42

Shaikh H, Anis A, Poulose AM, Alam M, A-Otaibi MN, Alam MA, Al-Zahrani SM. (2016). Studies on High Density Polyethylene Reinforced with Phosphate Ore Particles: Thermal, Rheological, Mechanical and Morphological Properties. Polymer-Plastics Technology and Engineering, 55(17):1831-1841. https://doi.org/10.1080/03602559.2016.1171875

Esakki B. (2017). Modeling and prediction of optimal process parameters in wear behaviour of selective inhibition sintered high density polyethylene parts. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-017-0033-z

ASTM D638-14. (2014). Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA, 82(C):1-15.

ASTM D790–03. (2017). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International, West Conshohocken, PA.

Shubham P, Sikidar A, Chand T. (2016). The influence of layer thickness on mechanical properties of the 3D printed ABS polymer by fused deposition modeling. Key Engineering Materials, 706:63-67. https://doi.org/10.4028/www.scientific.net/KEM.706.6

Khalil Y, Kowalski A, Hopkinson N. (2016). Influence of energy density on flexural properties of laser-sintered UHMWPE. Additive Manufacturing, 10:67-75. https://doi.org/10.1016/j.addma.2016.03.002

?im?ek B, ?ç, YT, ?im?ek EH. (2016). A RSM-Based Multi-Response Optimization Application for Determining Optimal Mix Proportions of Standard Ready-Mixed Concrete. Arabian Journal for Science and Engineering, 41(4):1435-1450. https://doi.org/10.1007/s13369-015-1987-0

Downloads

Published

2020-07-04

How to Cite

Sisay Mengesha, M., Balasubramanian , E., Arunkumar, P., Silambarasan , M., & Rajamani, D. (2020). DEVELOPMENT OF LOW-COST ADDITIVE MANUFACTURING SYSTEM THROUGH SELECTIVE INHIBITION SINTERING (SIS) PROCESS AND EVALUATION OF MECHANICAL CHARACTERISTICS OF FABRICATED PARTS . IIUM Engineering Journal, 21(2), 212 - 229. https://doi.org/10.31436/iiumej.v21i2.1354

Issue

Section

Materials and Manufacturing Engineering