• Noorini Izzati Mohamad Mazuki Department of Chemical Engineering and Process, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0003-4780-4391
  • Teow Yeit Haan Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan,
  • Abdul Wahab Mohammad Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia




Sewage reclamation, Single disinfection unit, Integrated disinfection system, Water reuse, Escherichia coli


Selection of suitable disinfection technology is necessary with regards to wastewater reclamation goals. In this work, the performance of various disinfection technologies - single disinfection units and integrated disinfection systems - on local sewage was studied for non-potable reuse. Disinfection units used as stand-alone units include ultraviolet (UV) disinfection, chlorination, microfiltration (MF), and ultrafiltration (UF). The integrated disinfection system consists of UV or chlorination as the primary disinfection unit incorporated with either MF, UF, multi-media or granular activated carbon as pre-treatment. The performance of these disinfection units and integrated processes were evaluated based on the percentage of removal of biochemical oxygen demand, chemical oxygen demand, total suspended solids, ammonia nitrogen, nitrate nitrogen, phosphorus, Escherichia coli, and trihalomethane in bench-scale disinfection systems. The single unit of PES20kDa membrane and the integrated disinfection system of UF-Cl showed the most effective treatment among single disinfection units and integrated systems, respectively. The results showed that almost all disinfection units and integrated disinfection processes were useable for restricted and unrestricted area non-potable applications according to United State Environmental Protection Agency (US EPA) water reuse guidelines and managed to fulfil Singapore grey water quality for recycling.

ABSTRAK: Pemilihan teknologi penyahjangkitan kuman yang sesuai adalah perlu selaras dengan matlamat pemulihgunaan air buangan. Kajian ini adalah tentang prestasi pelbagai teknologi penyahjangkitan kuman - unit tunggal penyahjangkitan kuman dan sistem penyahjangkitan kuman bersepadu pada air sisa kumbahan tempatan dikaji bagi penggunaan semula air minuman. Unit  tunggal penyahjangkitan kuman yang digunakan mempunyai penyahjangkitan kuman ultraungu (UV), pengklorinan, mikro penurasan (MF), dan ultra penurasan (UF). Manakala, sistem penyahjangkitan kuman bersepadu terdiri daripada UV atau pengklorinan sebagai unit penyahjangkitan kuman utama yang digabungkan bersama samada dengan MF, UF, multi-media atau karbon teraktif berbutir sebagai proses pra-rawatan. Prestasi unit tunggal penyahjangkitan kuman dan proses-proses bersepadu dinilai berdasarkan pada peratus penyingkiran keperluan oksigen biokimia, permintaan oksigen kimia, jumlah pepejal terampai, nitrogen ammonia, nitrogen nitrat, fosforus, coli Escherichia, dan trihalometana dalam sistem penyahjangkitan kuman berskala-makmal. Unit tunggal penurasan ultra membran PES20kDa dan sistem penyahjangkitan kuman bersepadu UF-Cl menunjukkan masing-masing paling efektif dalam rawatan unit tunggal dan sistem penyahjangkitan kuman bersepadu. Keputusan menunjukkan bahawa hampir semua unit tunggal penyahjangkitan kuman dan proses penyahjangkitan kuman bersepadu boleh diguna pakai bagi aplikasi terhad dan tidak terhad  mengikut garis panduan penggunaan semula air sisa rawatan yang ditetapkan oleh Agensi Pelindungan Alam Sekitar Amerika Syarikat (US EPA) dan kualiti kitar semula air sisa Singapura.


Download data is not yet available.

Author Biography

Abdul Wahab Mohammad, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

Chemical Engineering Program, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia


Mohamed RMSR, Nazmi AM, Arief MM, Hashim MKA. (2016) Conventional water filter (sand and gravel) for ablution water treatment, reuse potential, and its water savings. J. Sustain. Dev, 9:35–43. doi:10.5539/jsd.v9n1p35

Acedemy of Sciences Malaysia. (2015) Study on the Current Issues and Needs for Water Supply and Wastewater Management in Malaysia. Volume 2. Kuala Lumpur. Retrieved from https://issuu.com/asmpub/docs/wswm_volume_2

Alternative Water Resource to Potentially Reduce Water Footprint [http://ensearch.org/wp-content/uploads/2013/10/PAPER-11-ALTERNATIVE-WATER-RESOURCES-AS-A-POTENTIAL-TO-REDUCE-WATER-FOOTPRINT.pdf]

Cleaning the Unseen [https://www.thestar.com.my/news/nation/2016/12/04/cleaning-the-unseen-from-the-tidak-apa-attitude-of-users-to-financial-gaps-former-indah-water-konsor/]

Looking For Water [https://www.thestar.com.my/news/environment/2014/06/16/looking-for-water/]

Wahid MA, Tanaka H. (2012) Potential implementation of wastewater reclamation and reuse in Malaysia urban area. Int. Sustain. Civ. Eng. J., 1(1):75–83.

Abarnou A, Miossec L. (1992) Chlorinated waters discharged to the marine environment chemistry and environmental impact. An overview. Sci. Total Environ., 126:173–197. doi:10.1016/0048-9697(92)90490-J

Turtoi M. (2013) Ultraviolet light potential for wastewater disinfection. Ann. Food Sci. Technol., 14(1):153–164. Retrieved from https://www.researchgate.net/publication/264002288_Ultraviolet_light_potential_for_wastewater_disinfection

Rodriguez-Chueca J, Ormad MP, Mosteo R, Sarasa J, Ovelleiro JL. (2015) Conventional and advanced oxidation processes used in disinfection of treated urban wastewater. Water Environ. Res., 87(3):281–288. doi:10.2175/106143014X13987223590362

UV Disinfection for Wastewater [http://www.trojanuv.com/applications/wastewater]

U.S. Environmental Protection Agency. (2004) Guidelines for Water Reuse. Washington.

Grover D, Zhou J, Frickers P, Readman J. (2011) Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water. J. Hazard Mater, 185(2-3):1005–1011. doi:10.1016/j.jhazmat.2010.10.005

Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res, 41(5):1013–1021. doi:10.1016/j.watres.2006.06.034

Margot J, Kienle C, Magnet A, Weil M, Rossi L, de Alencastro LF, Abegglen C, Thonney D, Chevre N, Scharer M, Barry DA. (2013) Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci Total Env, 461:480–498. doi:10.1016/j.scitotenv.2013.05.034

Gonzalez O, Bayarri B, Acena J, Perez S, Barcelo D. (2016) Treatment technologies for wastewater reuse: Fate of contaminants of emerging concern. In Advanced Treatment Technologies for Urban Wastewater Reuse The Handbook of Environmental Chemistry. Volume 45. Edited by Fatta-Kassinos D, Dionysiou D, Kummerer K. Cham, Springer; pp 5–38.

Morowitz HJ. (1950) Absorption effects in volume irradiation of microorganisms. Science,

(2879):229–230. doi:10.1126/science.111.2879.229-a

Hallmich C, Gehr R. (2010) Effect of pre- and post-UV disinfection conditions on photoreactivation of fecal coliforms in wastewater effluents. Water Res, 44: 2885–2893. doi:10.1016/j.watres.2010.02.003

Wahid MA, Kim I, Yamashita N, Tanaka H, Baki A. (2012) UV based process for E . coli and coliphage in secondary effluent for wastewater reclamation and reuse. Inst. Eng. Malaysia, 73:18–24. Retrieved from https://www.myiem.org.my/content/iem_journal_2012-361.aspx

Anastasi EM, Wohlsen TD, Stratton HM, Katouli M. (2013) Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Res, 47(17):6670-6679. doi:10.1016/j.watres.2013.09.008

March JG, Gual M. (2007) Breakpoint chlorination curves of greywater. Water Environ. Res, 79(8):828–832. doi:10.2175/106143007X156736

Jorgensen SE. (1993) Breakpoint chlorination. In The Removal of Nitrogen Compounds from Wastewater. Edited by Halling-Sorensen B, Jorgensen SE. Netherlands, Elsevier Science Publishers; pp. 295–304.

Martins JM, Majdalani S, Vitorge E, Desaunay A, Navel A, Guine V, Daian JF, Vince E, Denis H, Gaudet JP. (2013) Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil. Environ. Sci. Process. Impact, 15(2):347–356. doi:10.1039/c2em30586k.

Falsanisi D, Liberti L, Notarnicola M. (2009) Ultrafiltration (UF) pilot plant for municipal wastewater reuse in agriculture: Impact of the operation mode on process performance. Water, 1:872–885. doi:10.3390/w2040872

Ang WL, Mohammad AW, Hilal N, Leo CP. (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination, 363: 2–18. Doi:10.1016/j.desal.2014.03.008

Mandzy N, Grulke E, Druffel T. (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technology, 160(2):121-126. doi:10.1016/j.powtec.2005.08.020

Shah AD, Mitch WA. (2012) Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways. Environ. Sci. Technol., 46:119–131. doi:10.1021/es203312s

Farrell C, Hassard F, Jefferson B, Leziart T, Nocker A, Jarvis P. (2018) Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. Sci. Total Environ., 624:638–647. doi:10.1016/j.scitotenv.2017.12.173

Winward GP, Avery LM, Stephenson T, Jefferson B. (2008) Chlorine disinfection of grey water for reuse: Effect of organics and particles. Water Res., 42:483–491. doi:10.1016/j.watres.2007.07.042

Phosphorus and water. [http://water.usgs.gov/edu/phosphorus.html]

Zhang Y, Zhang G, Wang P, Wang Q. (2017) Disinfection of municipal secondary effluents with microwave-induced electrodeless ultraviolet irradiation for water reuse. J. Chem. Technol. Biotechnol., 92(5):1017–1025. doi: 10.1002/jctb.5077

Hua G, Yeats S. (2010) Control of trihalomethanes in wastewater treatment. Florida Water

Resour. J., April. Retrived from https://www.fwrj.com/techarticles/0410 FWRJ_tech1.pdf

Technical Guide for Greywater Recycling System [https://www.pub.gov.sg/Documents/greywaterTech.pdf]




How to Cite

Mohamad Mazuki, N. I., Teow, Y. H., & Mohammad, A. W. (2020). A COMPARATIVE STUDY ON TREATMENT TECHNOLOGIES FOR SEWAGE RECLAMATION: A FOCUS ON THE DISINFECTION PROCESS. IIUM Engineering Journal, 21(2), 80 - 99. https://doi.org/10.31436/iiumej.v21i2.1245



Civil and Environmental Engineering