NITROGEN AND PHOSPHORUS REMOVAL EFFICIENCY OF THREE HELOPHYTES IN CONSTRUCTED SURFACE FLOW WETLANDS FOR URBAN WASTEWATER TREATMENT

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i2.1207

Keywords:

Wastewater; Constructed Wetland; Surface Flow; Nitrogen; Phosphorus

Abstract

Nutrient absorption is a function, among others, aimed at macrophytes for wastewater treatment. In this work, Typha angustifolia, Phragmites australis, and Sparganium erectum were multi-annually compared in secondary and tertiary treatment of urban wastewater under Mediterranean climate. Phragmites shows higher growth in height and density during the vegetative period of 1.83-2.09 cm.d-1 and 29-49 times the planting density, respectively. Aerial biomass records 52.2-54.3, 38.1-41.0, and 19.4 t dw.ha-1 in Phragmites, Typha, and Sparganium in the same order. The underground biomass fluctuates depending on the rooting vigour from 1.45 t dw.ha-1 for Sparganium to 44.49 t dw.ha-1 for Phragmites in tertiary treatment. Nitrogen and phosphorus aerial mineralomasses are more important in Phragmites (787 kg N.ha-1) and Typha (107 kg P.ha-1) in secondary treatment. Phragmites is, by far, the most cumulative of N and P in its underground part. The N and P retention by the vegetated mesocosms apparently has overall relationship with N-NH4+ and P-PO43-. Compared to mesocosm input, Phragmites assimilates one’s maximum of 6.39% N in its aerial tissues and 7.86% P in the underground ones, whereas Typha records maxima of 14.8% N and 33.6% P in its aerial part with respect to corresponding mesocosm removal.

ABSTRAK:Penyerapan nutrien adalah satu fungsi, antara lain, bertujuan untuk makrofit merawat sisa air. Kajian ini menggunakanTypha angustifolia, Phragmites australis dan Sparganium erectumbagi membandingkan pelbagai-jenis rawatan sekunder dan tertiar sisa air bandar pada iklim Mediterranean. Phragmites menunjukkan pertumbuhan tertinggi dalam ketinggian dan ketumpatandalam tempoh vegetatif iaitu 1.83-2.09 cm.d-1dan 29-49 kaliketumpatan penanaman, masing-masing. Rekod biojisim udara mencatatkan 52.2-54.3, 38.1-41.0, dan 19.4 t dw.ha-1 dalam Phragmites,Typha, dan Sparganium pada susunan sama. Biojisim bawah tanah berubah-ubah bergantung kepada kekuatanakar dari 1.45 t dw.ha-1 untuk Sparganium hingga 44.49 t dw.ha-1 untuk Phragmites dalam rawatan tertiar. Nitrogen dan Fosforus Mineralomassa udara adalah lebih penting untukPhragmites (787 kg N.ha-1) dan Typha (107 kg P.ha-1) dalam rawatan sekunder. Phragmites, setakat ini, paling kumulatif bagi N dan P pada bahagian bawah tanah. Pembendungan N dan P oleh mesokisme tumbuh-tumbuhan secara nyata berkaitan dengan N-NH4+ dan P-PO43-. Berbanding input mesokisme,Phragmites mengasimilasi maksimum pada N 6.39% tisu udara dan P 7.86% bahagian bawah tanah, manakala Typha mencatatkan maksima N 14.8% dan P 33.6% pada bahagian udara dengan penyingkiran mesokisme sepadan.

ABSTRAK: Penyerapan nutrien adalah satu fungsi, antara lain, bertujuan untuk makrofit merawat sisa air. Kajian ini menggunakan Typha angustifolia, Phragmites australis dan Sparganium erectum bagi membandingkan pelbagai-jenis rawatan sekunder dan tertiar sisa air bandar pada iklim Mediterranean. Phragmites menunjukkan pertumbuhan tertinggi dalam ketinggian dan ketumpatan dalam tempoh vegetatif iaitu 1.83-2.09 cm.d-1 dan 29-49 kali ketumpatan penanaman, masing-masing. Rekod biojisim udara mencatatkan 52.2-54.3, 38.1-41.0, dan 19.4 t dw.ha-1 dalam Phragmites, Typha, dan Sparganium pada susunan sama. Biojisim bawah tanah berubah-ubah bergantung kepada kekuatan akar dari 1.45 t dw.ha-1 untuk Sparganium hingga 44.49 t dw.ha-1 untuk Phragmites dalam rawatan tertiar. Nitrogen dan Fosforus Mineralomassa udara adalah lebih penting untuk Phragmites (787 kg N.ha-1) dan Typha (107 kg P.ha-1) dalam rawatan sekunder. Phragmites, setakat ini, paling kumulatif bagi N dan P pada bahagian bawah tanah. Pembendungan N dan P oleh mesokisme tumbuh-tumbuhan secara nyata berkaitan dengan N-NH4+ dan P-PO43-. Berbanding input mesokisme, Phragmites mengasimilasi maksimum pada N 6.39% tisu udara dan P 7.86% bahagian bawah tanah, manakala Typha mencatatkan maksima N 14.8% dan P 33.6% pada bahagian udara dengan penyingkiran mesokisme sepadan.

Downloads

Download data is not yet available.

References

Radoux M. (1989) Epuration des eaux usées par hydrosère reconstituée. Trib. CEBEDEAU, 42(8):62-68.

Greenway M. (2003) Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia. Water Sci. Technol., 48(2):121-128. https://doi.org/10.2166/wst.2003.0101

Vymazal J. (2013) Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng., 61(Part B):582-592. https://doi.org/10.1016/j.ecoleng.2013.06.023

Brix H. (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol., 35(5):11-17. https://doi.org/10.2166/wst.1997.0154

Greenway M, Woolley A. (1999) Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng., 12(1-2):39-55. https://doi.org/10.1016/S0925-8574(98)00053-6

Zheng Y, Wang XC, Ge Y, Dzakpasu M, Zhao Y, Xiong J. (2015) Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecol. Eng., 83:268-275. https://doi.org/10.1016/j.ecoleng.2015.06.035

Korkusuz EA. (2005) Manual of practice on constructed wetlands for wastewater treatment and reuse in mediterranean countries; AVKR 5 - Technical Report Med-Reunet II (INCO-CT-2003-502453): Agbar Foundation Barcelona.

Ezzahri J, Ennabili A, Ater M, Radoux M. (2001) Epuration des eaux usées urbaines : Expérimentation sous climat méditerranéen (M’Diq, Nord-ouest du Maroc). Ann. Chim. Sci. Mat., 26:S297-311.

Ezzahri J, Ennabili A, Radoux M (2010) Artificial ecosystems for wastewaters treatment under Mediterranean conditions (Morocco). Biol. Divers. Conserv. 3/2:145-150. Retrieved from http://www.biodicon.com/YayinlananMakaleler/7.15.pdf

Radoux M, Cadelli D, Nemcova M, Ennabili A, Ezzahri J. (2003) Optimisation of extensive wastewater treatment systems under Mediterranean conditions (Morocco): compared purification efficiency of artificial ecosystems. In Wetlands: nutrients, metals and mass Cycling; Vymazal, J., Ed. Backhuys Publishers: Leiden, NL, pp. 143-168.

Ennabili A. (1999) Végétation hygrophile du Maroc méditerranéen: écologie, socio-économie et rôle potentiel dans l’épuration des eaux usées. PhD thesis. University of Liege, Department of Environmental Sciences and Management.

Ezzahri J. (2005) Optimisation de l'épuration naturelle des eaux usées domestiques urbaines dans le contexte climatique et socio-économique du Nord du Maroc (M'Diq). PhD thesis. University of Liege, Department of Environmental Sciences and Management.

Standard Methods. (1995) Standard Methods for the Examination of Water and Wastewater, 19thedn, American Public Health Association/American Water Works Association/Water Environment Federation: Washington D.C.

Ennabili A, Ater M, Radoux M. (1998) Biomass production and NPK-retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat. Bot. 62(1):45-56. https://doi.org/10.1016/S0304-3770(98)00075-8

Ennabili A. (2008) Régénération in vivo de macrophytes originaires des zones humides du Maroc méditerranéen. Rev. Assoc. Forum Nord Maroc, 2-3:116-124. Retrieved from http://revue-afnm.org/b2e/numero-2-3/regeneration-in-vivo-de-macrophytes

Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS. (2013) Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol. Eng., 61(Part A):460-468. https://doi.org/10.1016/j.ecoleng.2013.10.010

Zhang J, Sun H, Wang W, Hu Z, Yin X, Ngo HH, Guo W, Fan J. (2017) Enhancement of surface flow constructed wetlands performance at low temperature through seasonal plant collocation. Bioresour. Technol., 224:222-228. https://doi.org/10.1016/j.biortech.2016.11.006

Song U, Waldman B, Park JS, Lee K, Park SJ, Lee EJ. (2018) Improving the remediation capacity of a landfill leachate channel by selecting suitable macrophytes. J. Hydro-Environ. Res., 20:31-37. https://doi.org/10.1016/j.jher.2018.04.005

Ennabili A, Gharnit N. (2003) Effets d’aménagements du littoral tétouanais (Nord-ouest du Maroc) sur la végétation hygrophile (Spermatophyta). Acta Bot. Barc., 48:199-216.

Asaeda T, Rajapakse L, Kanoh M. (2010) Fine sediment retention as affected by annual shoot collapse: Sparganium erectum as an ecosystem engineer in a lowland stream. River Res. Appl., 26(9):1153-169. https://doi.org/10.1002/rra.1322

Liffen T, Gurnell AM, O’Hare MT. (2013) Profiling the below ground biomass of an emergent macrophyte using an adapted ingrowth core method. Aquat. Bot., 110:97-102. https://doi.org/10.1016/j.aquabot.2013.05.008

Asaeda T, Rajapakse L, Manatunge J, Sahara N. (2006) The effect of summer harvesting of Phragmites australis on growth characteristics and rhizome resource storage. Hydrobiologia, 553:327-335. https://doi.org/10.1007/s10750-005-1157-6

Maddison M, Soosaar K, Mauring T, Mander Ü. (2009) The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. Desalination, 246(1-3):120-128. https://doi.org/10.1016/j.desal.2008.02.040

Boyd MC, Brown MT, Brandt-Williams S. (2015) Addressing pollutant load reduction goals for impaired waterbodies through biomass harvest of Gulf Coast type Phragmites australis (common reed). Wetlands Ecol. Manage., 23:519-533. https://doi.org/10.1007/s11273-015-9406-6

Tanaka TST, Irbis C, Kumagai H, Inamura T. (2016) Timing of harvest of Phragmites australis (CAV.) Trin. ex Steudel affects subsequent canopy structure and nutritive value of roughage in subtropical highland. J. Environ. Manag., 166:420-428. https://doi.org/10.1016/j.jenvman.2015.10.055

de los Reyes CP, Villamar CA, Neubauer ME, Pozo G, Vidal G. (2013) Behavior of Typha angustifolia L. in a free water surface constructed wetlands for the treatment of swine Wastewater. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 48(10):1216-224. https://doi.org/10.1080/10934529.2013.776852

Maucieri C, Salvato M, Tamiazzo J, Borin M. (2014) Biomass production and soil organic carbon accumulation in a free water surface constructed wetland treating agricultural wastewater in North Eastern Italy. Ecol. Eng., 70:422-428. https://doi.org/10.1016/j.ecoleng.2014.06.020

Borin M, Tocchetto D. (2007) Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. Sci. Total Environ., 380(1-3):38-47. https://doi.org/10.1016/j.scitotenv.2006.12.039

Li EH, Li W, Wang XL, Xue HP, Xiao F. (2010) Experiment of emergent macrophytes growing in contaminated sludge: Implication for sediment purification and lake restoration. Ecol. Eng., 36(4):427-434. https://doi.org/10.1016/j.ecoleng.2009.11.009

Das SC, Tanaka N (2007) Estimating nitrogen budgets of Typha angustifolia by considering the regrowth shoot productivity and nitrogen content after harvesting aerial organs in different growing seasons. Landsc. Ecol. Eng., 3:99-108. https://doi.org/10.1007/s11355-007-0024-1

Asaeda T, Rashid MH. (2015) Nutrient retention associated with phenological features in Sparganium erectum stands in a lowland stream. River Res. Appl., 31(2):207-215. https://doi.org/10.1002/rra.2733

Chicalote-Castillo D, Ramírez-García P, Macías-Rubalcava ML. (2017) Allelopathic effects among selected species of phytoplankton and macrophytes. J. Environ. Biol., 38(Special issue):1221-227. http://dx.doi.org/10.22438/jeb/38/6(SI)/07

Zhang TT, Hu W, Zhang D. (2012) Allelopathic effect of Typha angustifolia L. on phytoplankton. Adv. Mater. Res.-Switz., 383-390:3724-728. http://dx.doi.org/10.4028/www.scientific.net/AMR.383-390.3724

Gross EM. (2003) Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci., 22(3-4):313-339. https://doi.org/10.1080/713610859

Downloads

Published

2020-07-04

How to Cite

Ennabili, A., & Radoux , M. (2020). NITROGEN AND PHOSPHORUS REMOVAL EFFICIENCY OF THREE HELOPHYTES IN CONSTRUCTED SURFACE FLOW WETLANDS FOR URBAN WASTEWATER TREATMENT. IIUM Engineering Journal, 21(2), 25 - 40. https://doi.org/10.31436/iiumej.v21i2.1207

Issue

Section

Chemical and Biotechnology Engineering