• Abdulbasit Hassan Mahdi bTikrit Unversity, College of Engineering, Department of Chemical Engineering, Iraq, Tikrit
  • Suhaib Salih University of Tikirit
  • Heba Sa’ady Ayuob Tikrit Unversity, College of Engineering, Department of Chemical Engineering, Iraq, Tikrit
  • Tushar Ghosh Department of Nuclear Science & Engineering Institute, University of Missouri-Columbia, 416 S. Sixth Street, E 2434 Lafferre Hall, Columbia, Missouri 65211, United States



Nitrogen separation, PSA, Argon, Model simulation.


A mathematical model was used to design four modes of two-bed pressure swing adsorption (PSA) process to investigate argon presence in the feed mixture. The effect of operating parameters such as cycle time, pressure equalization, adsorption pressure, and purging flow rate was investigated. The model was validated with experimental data of nitrogen separation from the air by a single bed adsorber on carbon molecular sieve (CMS). A good agreement with experimental data is obtained. In the PSA process, higher purity of nitrogen (99.7%) was detected by mode 4 when the feed mixture was free of argon (O2: 21%, N2:79%). While the nitrogen purity was only 98.0% in the state of argon presence in the feed mixture (O2: 21%, N2: 78%, Ar: 1%). The results showed that the cycle time had insignificant effect whereas the pressure equalization and purging at low vacuum pressure had a significant effect on the process performance.

ABSTRAK: Model matematik digunakan bagi membina empat mod terdiri daripada tekanan dua-turus proses penyerapan buai (PSA) bagi menyiasat kehadiran argon dalam campuran pakan. Kesan parameter beroperasi seperti masa kitaran, penyamaan tekanan, tekanan penyerapan, dan kadar aliran penyingkiran disiasat. Model matematik tersebut disiasat melalui data eksperimen pemisahan nitrogen dari udara melalui penyerapan turus tunggal pada penapis molekular karbon (CMS). Data eksperimen yang bagus diperoleh. Dalam proses PSA, mod keempat menghasilkan ketulenan nitrogen (99.7%) lebih tinggi apabila campuran pakan bebas argon (O2: 21%, N2:79%). Sementara itu, ketulenan nitrogen hanya 98.0% apabila terdapat kehadiran argon dalam campuran pakan (O2: 21%, N2: 78%, Ar: 1%). Kajian menunjukkan masa kitaran memberi kesan tidak signifikan sementara penyamaan tekanan  dan penyingkiran pada tekanan vakum rendah mempunyai kesan signifikan terhadap prestasi proses.


Download data is not yet available.


Metrics Loading ...


Nicholas AF, Mohd ZH , Zulkarnain Z, Tumirah K. (2019) Activated Carbon for shape stabilized Phase Change Material. Technology and Applications of carbon nanomaterials, 279-308.

Mostamand A, Mofarahi M. (2011) Simulation of a single bed pressure swing adsorption for producing nitrogen. In International Conference on Chemical, Biological and Environment Sciences (ICCEBS'2011) Bangkok.

Abdel-Rahman ZA, Mhdi AH, Auob HS. (2016) Parametric study for nitrogen separation from air by pressure swing adsorption using carbon molecular sieve. Tikrit Journal of Engineering Science. 23 (2), 1-9

Carreon MA. (2018) Molecular sieve membranes for N2/CH4 separation. Journal of Material Research, 33(1): 32-43.‏

Lemcoff NO. (1999) Nitrogen separation from air by pressure swing adsorption. Studies in Surface Science and Catalysis. 120: 347-370.

Reid CR, O’koye IP, Thomas KM.( 1998) Adsorption of gases on carbon molecular sieves used for air separation. Spherical Adsorptives as Probes for Kinetic Selectivity. 14(9): 2415-2425.

Vivo-Vilches JF, Agustín FP, Francisco JM, Francisco C, Christophe S , Ana MR, Alexander F, Alirio ER. (2018) From Carbon Molecular Sieves to VOCs filters: Carbon gels with tailored porosity for hexane isomers adsorption and separation, Microporous and Mesoporous Materials, 270: 161-167.

Shirley AI, Lemcoff NO. (2002) Air separation by carbon molecular sieves. Adsorption. 8: 147–155.

Kim J-D. ( 1995) Production of high-purity nitrogen from air by pressure swing adsorption on zeolite X. Separation Science and Technology, 30: 347-368.

Reynolds SP, Ebner AD, Ritter JA. (2006) Enriching psa cycle for the production of nitrogen from air. Ind. Eng. Chem. Res., 45: 3256-3264.

Yang J, Lee CH. (1998) Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas. Aiche Journal, 44: 1325-1334.

Xu M, Wu HC, Lin YS, Deng S. (2018) Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents. Chemical Engineering Journal, 354: 62-74.

Mate VIA, Dobladez JAD, Alvarez-Torrellas S, Larriba M, Rodriguez AM. (2019) Modeling and simulation of the efficient separation of Methane/Nitrogen mixtures with [Ni3 (HCOO) 6] MOF by PSA. Chemical Engineering Journal, 361: 1007-1018.

Moran A, Talu O. (2018) Limitations of Portable Pressure Swing Adsorption Processes for Air Separation. Industrial & Engineering Chemistry Research, 57(35): 11981-11987.‏‏

Farooq S, Ruthven DM. (1990) A comparison of linear driving force and pore diffusion models for a pressure swing adsorption bulk separation process. Chemical Engineering Science, 45: 107 – 115.

LaCava AI, Lemcoff NO. (1996) Single bed pressure swing adsorption process to generate high purity nitrogen. Gas Separation & purification , 10(2): 113-115.

Makarem MA, Mofarahi M, Jafarian B, Lee CH. (2019) Simulation and analysis of vacuum pressure swing adsorption using the differential quadrature method. Computers & Chemical Engineering, 121: 483-496.

‏Vaduva M, Stanciu V. (2006) Separation of nitrogen from air by selective adsorption of carbon molecular sieves. U.P.B. Sci. Bull., 68: 2-10.

Jee JG, Lee J-S, Lee CH. (2001) Air separation by a small-scale two-bed medical O2 pressure swing adsorption. Industrial & engineering chemistry research, 40: 3647-3658.

Jee JG, Kim MB, Lee CH. (2005) Pressure swing adsorption processes to purify oxygen using a carbon molecular sieve. Chemical Engineering Science, 60: 869 - 882.

Farooq S, Rathor MN, Hidajat K. (1993) A predictive model for a kinetically controlled pressure swing adsorption separation process, Chemical Engineering Science, 48(24): 4129– 4141.




How to Cite

Abdulbasit Hassan Mahdi, Salih, S., Heba Sa’ady Ayuob, & Tushar Ghosh. (2020). NUMERICAL STUDY OF ARGON EFFECT ON NITROGEN SEPARATION FROM AIR BY PRESSURE SWING ADSORPTION. IIUM Engineering Journal, 21(1), 1–11.



Chemical and Biotechnology Engineering