NUMERICAL ALGORITHM FOR FINDING OPTIMAL INITIAL CONCENTRATIONS OF CHEMICAL REACTIONS

Authors

DOI:

https://doi.org/10.31436/iiumej.v21i1.1180

Keywords:

Chemical kinetics, Artificial immune systems, Initial concentration of substances

Abstract

This article is devoted to the problem of developing methods for mathematical modelling in the sphere of optimal planning in a chemical experiment. In the article, the problem of finding the optimal ratio for initial concentrations of substances is formulated in general terms and an algorithm for solving this problem is constructed basing on the method of artificial immune systems. The developed algorithm for finding the optimal initial concentrations of substances allows solving the problem of experiment planning in chemistry at the computational experiment stage. In this case, the solution of the optimization problem found with its help does not depend on the choice of the initial approximation. The algorithm was tested for the industrially meaningful process of benzilidenebenzilamine  synthesis for which the optimum values of the initial concentrations were calculated in order to obtain maximum yield of the reaction product.

ABSTRAK: Artikel ini ditujukan untuk masalah mengembangkan kaedah pemodelan matematik dalam bidang perancangan optimum dalam percubaan kimia. Dalam artikel itu, masalah mencari nisbah optimum untuk konsentrasi awal bahan digubal secara umum dan algoritma untuk menyelesaikan masalah ini dibina berdasarkan kaedah sistem imun buatan. Algoritma yang dibangunkan untuk mencari kandungan konsentrasi awal yang optimum membolehkan menyelesaikan masalah perancangan percubaan dalam kimia pada peringkat percubaan pengkomputeran. Dalam kes ini, penyelesaian masalah pengoptimuman yang didapati dengan bantuannya tidak bergantung pada pilihan permulaan awal. Algoritma ini telah diuji untuk proses sintesis benzilidenebenzilamin yang bermakna industri yang mana nilai-nilai optimum kepekatan awal dikira untuk mendapatkan hasil maksimum produk reaksin.

Downloads

Download data is not yet available.

Author Biographies

Svetlana Mustafina, Bashkir State University - Sterlitamak Branch

Faculty of Mathematics and Information Technology, Department of Mathematical Modeling, Doctor of Physical and Mathematical Sciences, Professor, Dean of the Faculty

Andrey Antipin, Bashkir State University

Associate Professor, Department of Applied Informatics and Programming, Faculty of Mathematics and Information Technology

Evgenia Antipina, Bashkir State University

Faculty of Mathematics and Information Technology, Department of Mathematical Modeling, Candidate of Physical and Mathematical Sciences, Associate Professor, Research Fellow

Sofia Mustafina, Bashkir State University

Faculty of Mathematics and Information Technology, Department of Mathematical Modeling, Bachelor student, Researcher

Elena Odinokova, Moscow State University of Technologies and Management

Department of Information Technology and Management Systems, associate professor

Larisa Tuchkina, Moscow State University of Technologies and Management

Department of Information Technology and Management Systems, Associate Professor

Konstantin Kolyazov, Moscow State University of Technologies and Management

Department of Information Technology and Management Systems, Associate Professor

References

Gabow H.N and R.E. Tarjan.(1984) Efficient algorithms for a family of matroid intersection problems. Journal of Algorithms, 5:80-131.

Garey, M.R.,and Johnson, D.S.(1979) Computers and Intractibility, A Guide to the Theory of NP-Completeness. Freemann, San Francisco.

Narula, S.C., and C. A.Ho.(1980) Degree-Constrained Minimum Spanning Tree. Computer and Operation Research, 7:239-249.

Krishnamoorthy, M.,A.T. Ernst and Y. M Sharaila.(2001) Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree. Journal of Heuristics, 7(6): 587-611.

Deo N. and N. Kumar.(1997) Computation of Constrained Spanning Trees: A Unified Approach. Network Optimization ( Lecture Notes in Economics and Mathematical Systems. Editor : Panos M. Pardalos, et al. ,Springer-Verlag, Berlin, Germany: 194 – 220.

Zhou, G. and M Gen. (1997) A Note on Genetics Algorithms for Degree- Constrained Spanning Tree Problems. Networks, Vol. 30: 91 – 95.

Wamiliana. (2004) Solving the Degree Constrained Minimum Spanning Tree Using Tabu and Penalty Method. Jurnal Teknik Industri:1-9.

Caccetta L. and Wamiliana.(2001) Heuristics Algorithms for the Degree Constrained Minimum Spanning Tree Problems.Proceeding of the International Congress on Modelling and Simulation (MODSIM),Canberra, Editors: F. Ghassemi et.al:2161-2166.

Wamiliana and L. Caccetta. (2003)Tabu search Based Heuristics for the Degree Constrained Minimum Spanning Tree Problem.Proceeding of South East Asia Mathematical Society:133-140.

Wamiliana and L. Caccetta.(2012) The Modified CW1 Algorithm for The Degree Restricted Minimum Spanning Tree Problem, Proceeding of International Conference on Engineering and Technology Development, Bandarlampung 20-21 June:36-39.

Kawatra R. (2002)A multi period degree constrained Minimum Spanning Tree Problem, European Journal of Operational Research,143: 53 – 63.

[Wamiliana, D. Sakethi, and R. Yuniarti,(2010) Computational Aspect of WADR1 and WADR2 Algorithms for The Multi Period Degree Constrained Minimum Spanning Tree Problem. Proceeding SNMAP, Bandar lampung 8 – 9 December:208 – 214.

Wamiliana, Amanto, and M. Usman.(2013) Comparative Analysis for The Multi Period Degree Constrained Minimum Spanning Tree Problem. Proceeding The International Conference on Engineering and Technology Development (ICETD):39 – 43.

]Wamiliana, F. A.M. Elfaki, M. Usman, and M. Azram. (2015) Some Greedy Based Algorithms for Multi Periods Degree Constrained Minimum Spanning Tree Problem. ARPN Journal of Engineering and Applied Sciences, 2015: 10 (21): 10147 – 10152.

Wamiliana, M. Usman, D. Sakethi, R. Yuniarti, and A. Cucus.(2015) The Hybrid of Depth First Search Technique and Kruskal’s Algorithm for Solving The Multiperiod Degree Constrained Minimum Spanning Tree Problem. The 4th International Conference on Interactive Digital Media (ICIDM). IEEE Explore, Dec 2015

Wamiliana, Asmiati, M. Usman, A. Hijriani, and W. C. Hastono. (2018) Comparative Analysis of Some Modified Prim’s Algorithms to Solve the Multiperiod Degree Constrained Minimum Spanning Tree Problem. Indian Journal of Science and Technology,11(11):1-6.

Wamiliana, Warsono, Asmiati, A. Hijriani, and W. C. Hastono.(2018) Different Time Installation Effect on The Quality Of The Solution For The Multiperiod Installation Problem Using Modified Prim’s Algorithm. Far East Journal of Electronics and Communications, 18(2): 291-300.

GNU Octave. Available: https://www.gnu.org/software/octave.

Downloads

Published

2020-01-20

How to Cite

Mustafina, S., Andrey, A. A., Antipina, E. ., Mustafina, S. M., Odinokova, E. ., Tuchkina, L. ., & Kolyazov, K. K. (2020). NUMERICAL ALGORITHM FOR FINDING OPTIMAL INITIAL CONCENTRATIONS OF CHEMICAL REACTIONS. IIUM Engineering Journal, 21(1), 167 - 174. https://doi.org/10.31436/iiumej.v21i1.1180

Issue

Section

Engineering Mathematics and Applied Science