PARALLEL PROCESS DISCOVERY USING A NEW TIME-BASED ALPHA++ MINER

Keywords: alpha miner, business process model, process discovery, process mining, temporal pattern

Abstract

A lot of services in business processes lead information systems to build huge amounts of event logs that are difficult to observe. The event log will be analysed using a process discovery technique to mine the process model by implementing some well-known algorithms such as deterministic algorithms and heuristic algorithms. All of the algorithms have their own benefits and limitations in analysing and discovering the event log into process models. This research proposed a new Time-based Alpha++ Miner with an improvement of the Alpha++ Miner and Modified Time-based Alpha Miner algorithm. The proposed miner is able to consider noise traces, loop, and non-free choice when modelling a process model where both of original algorithms cannot override those issues. A new Time-based Alpha++ Miner utilizing Time Interval Pattern can mine the process model using new rules defined by the time interval pattern using a double-time stamp event log and define sequence and parallel (AND, OR, and XOR) relation. The original miners are only able to discover sequence and parallel (AND and XOR) relation. To know the differences between the original Alpha++ Miner and the new one including the process model and its relations, the evaluation using fitness and precision was done in this research. The results presented that the process model obtained by a new Time-based Alpha++ Miner was better than that of the original Alpha++ Miner algorithm in terms of parallel OR, handling noise, fitness value, and precision value.

ABSTRAK: Banyak sistem perniagaan perkhidmatan menghasilkan sejumlah besar log data maklumat yang payah dipantau. Log data ini akan dianalisis menggunakan teknik proses penemuan bagi memperoleh model proses dengan menerapkan beberapa algoritma terkenal, seperti algoritma deterministik dan algoritma heuristik. Semua algoritma ini memiliki kehebatan dan kekurangannya dalam menganalisis dan mencari log data ke dalam model proses. Kajian ini mencadangkan Time-based Alpha++ Miner baru yang merupakan pembaharuan dari algoritma Alpha++ Miner dan Modified Time-based Alpha Miner. Algoritma baru ini dapat mempertimbangkan kesan bunyi, pusingan, dan pilihan tidak bebas ketika memodelkan model proses di mana kedua algoritma asal tidak dapat menggantikan isu tersebut. Time-based Alpha++ Miner baru mengguna pakai Pola Interval Waktu berjaya memperoleh model proses menggunakan peraturan baru berdasarkan Pola Interval Waktu menggunakan log peristiwa waktu-ganda dan menentukan jujukan dan hubungan selari (AND, OR, dan XOR). Dibandingkan algoritma asal, ia hanya dapat menemukan jujukan dan hubungan selari (AND dan XOR). Bagi membezakan Alpha++ Miner asal dan yang baru termasuk model proses dan kaitannya, penilaian menggunakan nilai padanan dan penelitian telah dijalankan dalam kajian ini. Hasil kajian model proses yang diperoleh oleh Time-based Alpha++ Miner baru, adalah lebih baik keputusannya berbanding menggunakan algoritma Alpha++ Miner asal, berdasarkan hubungan selari OR, bunyi kawalan, nilai padanan, dan nilai penelitian.

Downloads

Download data is not yet available.

References

Sienou A, Karduck AP, Lamine E, Pingaud H. (2018) Business Process and Risk Models Enrichment: Considerations for Business Intelligence. IEEE International Conference on e-Business Engineering. DOI: 10.1109/ICEBE.2008.123

Peña MR, Bayona-Oré S. (2018) Process Mining and Automatic Process Discovery. 7th International Conference On Software Process Improvement (CIMPS). DOI: 10.1109/CIMPS.2018.8625621

Saylam R, Sahingoz OK. (2013) Process mining in business process management: Concepts and challenges. International Conference on Electronics, Computer and Computation (ICECCO). DOI: 10.1109/ICECCO.2013.6718246

Van der Aalst WMP. (2011) Process mining: discovery, conformance and enhancement of business processes. Springer Science and Business Media. http://dx.doi.org/10.1007/978-3-642-19345-3

Effendi YA, Sarno R. (2018) Modeling Parallel Business Process Using Modified Time-based Alpha Miner. International Journal of Innovative Computing, Information and Control, 14(5). DOI: 10.24507/ijicic.14.05.1565

Wen L, Van der Aalst WMP, Wang J, Sun J. (2007) Mining Process Models with Non-Free-Choice Constructs. Data Mining and Knowledge Discovery, 15(2):145-180.

Van der Aalst WMP, Weijters T, Maruster L. (2004) Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128-1142.

Weijters AJMM, Van der Aalst WMP, Alves de Medeiros AK. (2006) Process Mining with the Heuristic-miner algorithm. Technische Universiteit Eindhoven, Tech. Rep. WP, 166:1-34.

Burattin A, Sperduti A. (2010) Heuristics Miner for Time Intervals. European Symposium on Artificial Neural Networks - Computational Intelligence and Machine Learning, d-side publi., ISBN 2-930307-10-2.

Gehrke N, Werner M. (2013) Process mining. Das Wirtschaftwachstum, 42(7):934-943.

Alves de Medeiros AK. (2004) Process mining: Extending the α-algorithm to mine short loops. Eindhoven, Netherland: BETA working paper series, WP 113, Eindhoven University of Technology, Eindhoven.

Wen L, Van der Aalst WMP, Wang J, Sun J. (2007) Mining Process Models with Non-Free-Choice Constructs. Data Mining and Knowledge Discovery, 15(2):145-180.

Sarno R, Effendi YA, Haryadita F. (2016) Modified Time-Based Heuristics Miner for Parallel Business Processes. International Review on Computers and Software (IRECOS), 11 (3):249-260. http://doi.org/10.15866/irecos.v11i3.8717

Sutrisnowati RA, Bae H, Dongha L, Minsoo K. (2014) Process Model Discovery based on Activity Lifespan. International Conference on Technology Innovation and Industrial Management, pp.137-156. http://dx.doi.org/10.1016/j.eswa.2014.05.055

Effendi YA, Sarno R. (2018) Implementation of the Semantic Web in Business Process Modeling Using Petri Nets,” International Conference on Information and Communications Technology (ICOIACT). DOI: 10.1109/ICOIACT.2018.8350724

Effendi YA, Sarno R. (2018) Conformance Checking Evaluation of Process Discovery Using Modified Alpha++ Miner Algorithm. International Seminar on Application for Technology of Information and Communication, pp. 435 – 440. DOI: 10.1109/ISEMANTIC.2018.8549770.

Burattin A, Maggi FM, Sperduti A. (2016) Conformance checking based on multi-perspective declarative process models. Expert Systems with Applications, 65:194-211. DOI: 10.1016/j.eswa.2016.08.040

Ishihara K, Hiraishi K. (2001) The completeness of linear logic for Petri net models. Logic Journal of the IGPL, 9(4):549 - 567. DOI: 10.1093/jigpal/9.4.549

De Cnudde S, Claes J, Poels G. (2014) Improving the Quality of the Heuristics Miner in Prom 6.2. Expert System with Application, 41:7678-7690.

Van Dongen BF, Verbeek HMW, Van der Aalst WMP, De Medeiros AKA, Weijters AJMM. (2005) The ProM Framework: A New Era in Process Mining Tool Support. 26th International Conference Applications and Theory of Petri Nets (ICATPN). DOI: 10.1007/11494744_25

Published
2020-01-20
How to Cite
Effendi, Y. A., & Sarno, R. (2020). PARALLEL PROCESS DISCOVERY USING A NEW TIME-BASED ALPHA++ MINER. IIUM Engineering Journal, 21(1), 126 -141. https://doi.org/10.31436/iiumej.v21i1.1173
Section
Engineering Mathematics and Applied Science