THE EFFECTS OF CERIUM PROMOTER ON THE PERFORMANCE OF COBALT-BASED CATALYSTS IN FISCHER TROPSCH SYNTHESIS FOR LIQUID FUEL PRODUCTION

Authors

  • Ahmed Lateef Khalaf Al-Ma'moon University College https://orcid.org/0000-0002-4837-2255
  • Firas Khaleel Al-Zuhairi Department of Petroleum Technology, University of Technology, Baghdad, Iraq https://orcid.org/0000-0002-8172-3803
  • Wafaa Abdul Kadhim 2Nanotechnology &Advance Material Research Center (NAMRC), University of Technology, Baghdad, Iraq
  • Mohd Hasbi Ab Rahim Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia

DOI:

https://doi.org/10.31436/iiumej.v21i2.1150

Keywords:

Cobalt-alumina catalyst, Cerium promoter, Fischere-Tropsch synthesis, GTL, syngas

Abstract

An intensive work of Fischer-Tropsch synthesis (FTS) on a cobalt-based catalyst supported with cerium as a promoter was presented. The influence of space velocity and inlet gas feed ratio on FTS reaction performance was studied for the synthesized catalysts. Incipient wetness impregnation method was utilized to synthesis both unpromoted (25%Co/?-Al2O3) and cerium promoted (1%Ce-25%Co/?-Al2O3) catalysts. The proposed catalysts were examined by N2 adsorption and temperature-programed reduction (TPR). The performance of Ce-promoted and unpromoted cobalt-based catalysts in FTS was assessed in terms of activity and selectivity to desired products (C5+). The obtained results revealed that the addition of cerium by impregnation notably favours the reducibility of cobalt oxides by reducing the reduction temperature. In addition, the promoted catalysts exhibited higher activity and selectivity toward desired products at low space velocity and high inlet gas feed ratio as compared with the unpromoted catalysts. In conclusion, a cerium based cobalt catalyst considered as a suitable candidate to be used in gas to the liquid conversion process.

ABSTRAK: Kajian intensif sintesis Fischer-Tropsch (FTS) adalah tentang pemangkin berasas kobalt bersama penggalak cerium. Pengaruh tindak balas FTS pada halaju ruang dan nisbah suapan gas masuk dikaji menggunakan pemangkin yang disintesis. Kaedah impregnasi insipien basah telah digunakan bagi mensintesis pemangkin bukan penggalak (25%Co/?-Al2O3) dan penggalak cerium (1%Ce-25%Co/?-Al2O3). Pemangkin ini diuji dengan penjerapan N2 dan pengurangan suhu terprogram (TPR). Hasil tindak balas penggalak-Ce dan bukan penggalak berasas kobalt dalam FTS diperiksa dari segi aktiviti dan pemilihan hasil (C5+). Tindak balas menunjukkan dengan penambahan cerium melalui kaedah impregnasi dengan ketara mengurangkan kobalt oksida bersama pengurangan suhu. Di samping itu, pemangkin penggalak menunjukkan aktiviti dan pemilihan ke arah hasil pada halaju ruang dan nisbah suapan gas masuk yang tinggi berbanding dengan pemangkin bukan penggalak. Kesimpulan, pemangkin kobalt berasas cerium dianggap sesuai sebagai pemangkin sintesis bagi digunakan dalam proses penukaran gas ke cecair.

Downloads

Download data is not yet available.

References

Hall KR. (2005) A new gas to liquids (GTL) or gas to ethylene (GTE) technology. Catalysis Today, 106(1-4): 243-246.

Singha RK, Shukla A, Yadav A, Konathala LNS, Bal R. (2017) Effect of metal-support interaction on activity and stability of Ni-CeO2 catalyst for partial oxidation of methane. Applied Catalysis B: Environmental, 202: 473-488.

Kim H, Jang W, Yoo S, Shim J, Jeon K, Na H, Lee Y, Jeon B, Bae JW, Roh H.(2018) Low temperature steam reforming of methane using metal oxide promoted Ni-Ce0.8Zr0.2O2 catalysts in a compact reformer. International Journal of Hydrogen Energy, 43(1): 262-270.

Shahhosseini HR, Saeidi S, Najari S, Gallucci F. (2017) Comparison of conventional and spherical reactor for the industrial auto-thermal reforming of methane to maximize synthesis gas and minimize CO2. International Journal of Hydrogen Energy, 42(31): 19798-19809.

Ma W, Jacobs G, Pendyala VRR, Sparks DE, Shafer WD, Thomas GA, MacLennan A, Hu Y, Davis BH. (2018) Fischer-Tropsch synthesis. Effect of KCl contaminant on the performance of iron and cobalt catalysts. Catalysis Today, 299: 28-36.

Bao B., El-Halwagi M. M., Elbashir N. O.(2010) Simulation, integration, and economic analysis of gas-to-liquid processes. Fuel Processing Technology, 91(7): 703-713.

Mousavi S, Zamaniyan A, Irani M, Rashidzadeh M.(2015) Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: review and model evaluation. Applied Catalysis A: General, 506: 57-66.

Zhu C, Bollas GM.(2018) Gasoline selective Fischer-Tropsch synthesis in structured bifunctional catalysts. Applied Catalysis B: Environmental, 235: 92-102.

Guo Q, Huang J, Qian W, Zhang H, Ma H, Ying W. (2018) Effect of Lanthanum on Zr–Co/?- Al2O3 Catalysts for Fischer–Tropsch Synthesis. Catalysis Letters, 148(9): 2789-2798.

Rahmati M, Huang B, Schofield LM, Fletcher TH, Woodfield BF, Hecker WC, Bartholomew CH, Argyle MD. (2018) Effects of Ag promotion and preparation method on cobalt Fischer-Tropsch catalysts supported on silica-modified alumina. Journal of Catalysis, 362: 118-128.

Pedersen EØ, Svenum I-H, Blekkan EA.(2018) Mn promoted Co catalysts for Fischer-Tropsch production of light olefins–An experimental and theoretical study. Journal of Catalysis, 361: 23-32.

Zeng S, Du Y, Su H, Zhang Y. (2011) Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer–Tropsch synthesis. Catalysis Communications, 13(1): 6-9.

He L, Zhang Y, Fan M.(2015) Development of composited rare-earth promoted cobalt-based Fischer–Tropsch synthesis catalysts with high activity and selectivity. Applied Catalysis A: General, 505: 276-283.

Pardo TF., Cabrera S, Sanchez DM., Boutonnet M.(2017) Ce-promoted Co/Al2O3 catalysts for Fischer–Tropsch synthesis. International journal of hydrogen energy, 42(15): 9754-9765.

de Lima AEP, de Oliveira DC. (2017) In situ XANES study of cobalt in Co-Ce-Al catalyst applied to steam reforming of ethanol reaction. Catalysis Today, 283:104-109.

Trepanier M, Tavasoli A, Dalai AK, Abatzoglou N.(2009) Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis. Applied Catalysis A: General, 353(2): 193-202.

Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL.(2007) Fischer–Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Applied Catalysis A: General, 333(2): 177-191.

Hilmen A, Schanke D, Holmen A. (1996) TPR study of the mechanism of rhenium promotion of alumina-supported cobalt Fischer-Tropsch catalysts. Catalysis letters, 38(3-4): 143-147.

Chu W, Chernavskii PA, Gengembre L, Pankina GA, Fongarland P, Khodakov AY. (2007) Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. Journal of Catalysis, 252(2): 215-230.

Osa AR, Lucas AD, Valverde JL, Romero A, Monteagudo I, Coca P, Sáncheza P.(2011) Influence of alkali promoters on synthetic diesel production over Co catalyst. Catalysis today, 167(1): 96-106.

Osa AR, Lucas AD, Romero A, Valverde JL, Sáncheza P. (2011) Fischer–Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions. Fuel Processing Technology, 90(5): 1935-1945.

Gnanamani MK, Jacobs G, Graham UM, Pendyala VRR, Martinelli M, Lennan AM, Hu Y, Davis BH. (2017) Effect of sequence of P and Co addition over silica for Fischer-Tropsch synthesis. Applied Catalysis A: General, 538: 190-198.

Dry ME.(1999) Fischer–Tropsch reactions and the environment. Applied Catalysis A: General, 189(2): 185-190.

Zhang L, Chu H, Qu H, Zhang Q, Xu H, Cao J, Tang Z, Xuan J. (2018) An investigation of efficient microstructured reactor with monolith Co/anodic ?-Al2O3/Al catalyst in Fischer-Tropsch synthesis. International Journal of Hydrogen Energy, 43(6): 3077-3086.

Pendyala VRR, Jacobs G, Bertaux C, Khalid S, Davis BH.(2016) Fischer–Tropsch synthesis: Effect of ammonia on supported cobalt catalysts. Journal of Catalysis, 337: p. 80-90.

Tristantini D ,Lögdberg S, Gevert B, Borg Ø, Holmen A. (2007) The effect of synthesis gas composition on the Fischer–Tropsch synthesis over Co/?-Al2O3 and Co–Re/?-Al2O3 catalysts. Fuel processing technology, 88(7): 643-649.

Xu D, Li W, Duan H, Ge Q, Xu H. (2005) Reaction performance and characterization of Co/Al2O3 Fischer–Tropsch catalysts promoted with Pt, Pd and Ru. Catalysis Letters, 102(3-4): 229-235.

Storsæter S, Tøtdal B, Walmsley JC, Tanem BS, Holmen A. (2005) Characterization of alumina-, silica-, and titania-supported cobalt Fischer–Tropsch catalysts. Journal of catalysis, 236(1): 139-152.

Visconti CG, Ballova Z, Lietti L, Tronconi E, Zennaro R, Forzatti P. (2010) Advances in Fischer–Tropsch Synthesis. Catalysts and Catalysis, CRC Press Taylor Francis Group, New York.

Downloads

Published

2020-07-04

How to Cite

Khalaf, A. L., Al-Zuhairi, F. K., Kadhim, W. A., & Rahim, M. H. A. (2020). THE EFFECTS OF CERIUM PROMOTER ON THE PERFORMANCE OF COBALT-BASED CATALYSTS IN FISCHER TROPSCH SYNTHESIS FOR LIQUID FUEL PRODUCTION. IIUM Engineering Journal, 21(2), 1 - 11. https://doi.org/10.31436/iiumej.v21i2.1150

Issue

Section

Chemical and Biotechnology Engineering