DESIGN OF WLAN AND WIMAX BAND REJECTION UTILIZING UWB PLANAR ANTENNA COMPRISING A SLIT IN THE CONDUCTOR PLANES

Authors

DOI:

https://doi.org/10.31436/iiumej.v20i2.1097

Keywords:

ultra wideband, slit, ellptical radiator, wlan, wimax

Abstract

A compact and low profile ultra wideband planar antenna comprises dual notched-band characteristics for WIMAX and WLAN are presented. UWB communication system is allocated between 3.1 and 10.6GHz, which  coexisted with the WLAN and WIMAX frequency bandwidths at 3.3 to 3.6GHz, and 5 to 6GHz, repsectively. The coexistence between multiple frequency bandwidths possibly can cause interference into the communication systems such as data loss and signal disruption. Thus, it is essential to eliminate the coexisted frequency bandwidhs from UWB spectrum. The UWB planar antenna is costructed with a radiator of an elliptical-shaped, and half-ground element which is subjected to suppress the frequency bandwidth for 3.3 to 3.7 and 5 to 6 GHz. Slits are engraved in the elliptical radiator and ground element by etching the conductor elements. Slit shapes are designed in simple and optimized to realize the maximum band notch characteristics. Slit placements are scrutinized and the band notch characteristics are determined. It is considered that the slit in the ground element and the elliptical radiator have stimulated the band notches frequency bandwidths for 3.3 to 3.7 and 5 to 6 GHz, respectively. The UWB planar antennas are compared with the reference antenna and the results are verified. Measured reflection coefficient S11 for band notch peaks at the WLAN and WIMAX frequency bandwidths are about -3.0 and -4.0 dB, respectively. Radiation pattern co-polarizations in the H- and E-plane are in omni- and bi-directional, respectively. Maximum gain G is located in the –z –axis and –x –axis in H- and E-plane in the frequency of interest. Surface currents are distributed in the slit areas. Slits in the elliptical radiator and the ground element are not substantially affect the UWB planar antenna overall performances.   

ABSTRAK: Antena jalur lebar paling satah yang padat dan bersusuk rendah telah diperkenalkan dan terdiri daripada dua ciri lebar-takik bagi WIMAX dan WLAN. Sistem komunikasi UWB berada pada 3.1 dan 10.6GHz, bertindan dengan jalur lebar frekuensi WLAN dan WIMAX yang berada pada 3.3 hingga 3.6GHz, dan 5 hingga 6GHz, masing-masing. Sifat bertindan antara beberapa jalur lebar frekuensi mungkin akan menyebabkan gangguan pada sistem komunikasi seperti kehilangan data dan gangguan isyarat. Oleh itu, adalah penting bagi membuang jalur lebar frekuensi yang bertindan dengan spektrum UWB. Antena satah UWB telah dibina dengan radiator pemancar berbentuk elips, dan unsur separuh-bumi (lapisan asas) dibawah jalur lebar frekuensi pada 3.3 hingga 3.7 dan 5 hingga 6 GHz. Jalur celahan telah diukir pada radiator elips dan lapisan asas dengan mengukir unsur konduktor. Jalur celahan telah direka mudah dan dioptimumkan bagi mencapai jalur takik maksimum. Kedudukan jalur celahan diteliti dan ciri-diri jalur takik diperolehi. Jalur celahan pada lapisan asas dan radiator elips diperhatikan menyebabkan frekuensi jalur lebar takik sebanyak 3.3 hingga 3.7 dan 5 hingga 6 GHz, masing-masing. Antena satah UWB dibandingkan dengan antena rujukan dan dapatan kajian telah disahkan tidak mempengaruhi keputusan antena planar UWB dengan ketara. Ukuran pantulan pekali S11 yand diukur pada frekuensi jalur lebar takik WLAN and WIMAX adalah -3.0 dan -4.0 dB, masing-masing. Corak pancaran radiasi ko-polar pada satah H- dan E- adalah omni- dan bi-arah, masing-masing. Kekuatan isyarat maksima G berada di paksi –z dan –x pada satah H- dan E- pada frekuensi yang dipilih. Elektrik pada permukaan tersebar dalam kawasan jalur celahan. Celah radiator elips dan lapisan asas tidak mempengaruhi prestasi keseluruhan antena satah UWB.    

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

siti fatimah jainal, Ms

Faculty of Engineering (FOE), Lincoln University College (LUC), Kelana Jaya, Malaysia

Communication System and Network (CSN) Laboratory, Department of Electronics System Engineering (ESE), Malaysia-Japan International Institute of Technology (MJIIT), Kuala Lumpur, Malaysia

Norliza Mohamed, Dr

Senior Lecturer, Dept. of Engineering, Razak Faculty of Technology and Informatics, Kuala Lumpur, Malaysia

Azura Hamzah, Dr

Senior Lecturer, Dept. of Electronic System Engineering (ESE), Malaysia-Japan International Institute of Technology (MJIIT), UTM-KL, Malaysia

References

Applications on uwb technology. Available: https://arxiv.org/abs/0911.1681.

Pongphan Leelatien, Koichi Ito, Kazuyuki Saito, Manmohan Sharma, Akram Alomainy. (2018) Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultra wideband communication. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2(2):94-101.

Timo Kumpuniemi, Juha Pekka Makela, Matti Hamalaine, Kamya Yekeh Yazdandoost, Jari Iinatti. (2017) Dynamic uwb off-body radio channels-human body shadowing effect. Available: 10.1109/PIMRC.2017.8292584.

Robust target-relative localization with ultra-wideband ranging and communication. Available: https://researchgate.net/publication/324602380.

Jawad Ali, Roshayati Yahya, Noorsaliza Abdullah, Syarfa Zahirah Sapuan. (2017) Ultra-wideband antenna for behind the wall detection. International Journal of Electrical and Computer Engineering (IJECE), 7(6):2936-2941.

Ultra wideband antennas-past and present. Available: https://www.researchgate.net/

publication/46093503.

Weihua Zhuang, Xuemin Sheman Shen Qi Bi. (2003) Ultra-wideband wireless communications. Wireless Communications and Mobile Computing, 3:663-685.

Erick Reyes-Vera, Mauricio Arias-Correa, Andreas Giraldo-Munoz, Daniel Catano-Ochoa, Juan Santa-Marin. (2017) Development of an improved response ultra-wideband antenna based on conductive adhesive of carbon composite. Progress in Electromagnetics Research C, 79:199-208.

Chien-Ching Chiu, Chun-Liang Liu, Shu-Han Liao. (2011) Channel characteristics of ultra-wideband systems with single co-channel interference. Wireless Communications and Mobile Computing, 13:864-873.

Lei Gao, Qun Chen. (2017) Channel loss estimation and test of ultra-wideband propagation from 2 to 10 ghz application. Indonesian Journal of Electrical Engineering and Computer Science, 6(3):663-670.

Romeo Giuliano, Gianluca Guidoni, Ibrahim Habib, Franco Mazzenga. (2004) Evaluation of interference due to uwb hot spot on fixed wireless access systems. J. Wireless Communications and Mobile Computing, 4:947-961.

Farshad Sarabchi, Chahe Nerguizian. (2015) Impact of th-uwb interference on mb-ofdm uwb systems: interference modeling and performance analysis. Wireless Communications and Mobile Computing, 16:960-976.

Bikramaditya Das, Ch. Sasmita Das, Susmita Das. (2010) Interference cancellation schemes in uwb systems used in wireless personal area network based on wavelet based pulse spectral shaping and transmitted reference uwb using awgn channel model. International Journal of Computer Applications, 2(2):88-93.

Simone Morosi, Romano Fantacci, Enrico Del Re, Leornardo Goratti. (2005) Performance of the bi-orthogonal modulation for ultra-wideband communication systems with multiple access interference. Wireless Communications and Mobile Computing, 5:5-14.

Young-Keun Yoon, Heon-Jin Hong, Ik Guen Choi. (2007) Ultra-wideband coexistence with wibro. J. ETRI, 29(2):234-236.

J.R. Foerster. (2002) The performance of a direct-sequence ultra wideband system in the presence of multipath, narrowband interference, and multiuser interference. IEEE Conference on Ultra Wideband Systems and Technologies, 21-23 May. Baltimore (USA), 87-91.

N.G. Ferrara, M.Z.H. Bhuiyan, and S. Soderholm. (2018) A new implementation of narrowband interference detection, characterization, and mitigation technique for a software-defined multi-gnss receiver. Avaible:https//researchgate.net/326784680.

K.Siwiak. (2001) Impact of ultra wide band transmissions on a generic receiver. IEEE VTS 53rd Vehicular Technology Conference, 6-9 May. Rhodes (Greece), 1181-1183.

A.Taha, and K.M.Chugg. (2002) A theoretical study on the effects of interference uwb multiple access impulse radio. Available:https://ieeexplore.org/abstract/document/1197276.

J.Bellorado, S.S.Ghassemzadeh, L.J.Greenstein, T.Sveinsson, and V.Tarokh. (2003) Coexistence of ultra-wideband systems with ieee-802.11a wireless lans. Available:https://ieeexplore.ieee.org/abstract/document/1258271.

Kai Shi, Yi Zhou, Burak Kellici, Timothy Wayne Fischer, Erchin Serpedin, and Aydin Iker Karsilayan. (2007) Impacts of narrowband interference on ofdm-uwb receivers:analysis and mitigation. IEEE Transactions on Signal Processing, 55(3):1118-1128.

A.Giorgetti, M.Chiani, and M.Z.Win. (2005) The effect of narrowband interference on wideband wireless communication systems. IEEE Transactions on Communications, 53(12):2139-2149.

Xiaoli Chu, and R.D.Murch. (2004) The effect of nbi on uwb time-hopping systems. IEEE Transactions on Wireless Communications, 3(5):1431-1436.

Ananthram Swami, B.M.Sadler and J.Turner. (2001) On the coexistence of ultra wideband and narrowband radio systems. Available:https//researchgate.net/publication/3937675.

Zhiquan Bai, Xiatong Li, Dongfeng Yuan, Kyungsup Kwak. (2010) Non-linear chirp based on uwb waveform design for suppression of nbi. Wireless Communications and Mobile Computing, 12:545-552.

Yamen Issa, Iyad Dayoud, Waala Hamouda. (2015) Performance analysis of multiple-input multiple-output relay networks based impulse radio ultra-wideband. Wireless Communications and Mobile Computing, 15:1225-1233.

Hanbin Shen, Weihua Zhang, Kyung Sup Kwak. (2007) Non-linear chirp uwb ranging system with narrowband interference suppression abilities. J. ETRI, 29(4):521-523.

S.Cui, K.C.Teh, K.H.Li, Y.L.Guan, C.L.Law. (2009) Performance analysis of transmitted-reference UWB systems with narrowband interference suppression. Wireless Communications and Mobile Computing, 9:1081-1088.

Xing Peng Mao, Jon W.Mark. (2008) Polarization filtering for narrowband interference suppression in ultra-wideband communications. Wireless Communications and Mobile Computing, 8:941-952.

A compact fractal uwb antenna with open-ended quarter wavelength slot for band notch characteristics.Available:https://www.researchgate.net/publication/229566986.

A WLAN notched wideband monopole antenna for ultra-wideband communication applications. Available: https://www.researchgate.net/publication/324463199.

Circular slotted monopole printed antenna with grounded stub WLAN band-notch for UWB applications. Available: https://doi.org/10.1080/1448837X.2018.1452331.

Dual-band shared-aperture UHF/UWB RFID reader antenna of circular polarization. Available: https://www.researchgate.net/publication/325327219.

Dual notch band UWB antenna with improved notch characteristics. Available: https://www.researchgate.net/publication/323646136.

Hemachandra R.Gorla, Frances J.Harackiewicz. (2015) Dual trident uwb planar antenna with band notch for wlan. Progress in Electromagnetics Research Letters, 54:115-121.

Novel design of dual band-notched rectangular monopole antenna with bandwidth enhancement for UWB applications. Available: https://www.researchgate.net/

publication/325380975.

Muhibbur Rahman, Jung-Dong Park. (2018) The smallest form factor uwb antenna with quintuple rejection bands for iot applications utilizing rsrr and rcsrr. National Center for Biotechnology Information US National Library of Medicine (NCBI) 18(911):1-16.

Ammar Alhegazi, Zahriladha Zakaria, Noor Azwan Shairi, Sharif Ahmed, Tole Sutikno. (2017) UWB filtenna with electronically reconfigurable band notch using defected misrotrip structure. Indonesian Journal of Electrical Engineering and Computer Science, 8(2):302-307.

Soufian Lakrit, Sudipta Das, Ali El Alami, Debaprasad Barad, Sraddhanjali Mohapatra. (2019) A compact uwb monopole patch antenna with reconfgurable band nocthed characteristics for Wi-MAX and WLAN applications. AEU International Journal of Electronics and Communications. Available: https://www.science direct.com/science/article/pii/S1434841119303048.

Bing Gong, Chuang Ma, Fan Jing, Yaling Hou, Ruibing Shen. (2018) A novel uwb antenna with two ultra narrow and closely space notched bands. Journal of Physics, 1176(2019), 1-7.

Downloads

Published

2019-12-02

How to Cite

jainal, siti fatimah, Mohamed, N., & Hamzah, A. (2019). DESIGN OF WLAN AND WIMAX BAND REJECTION UTILIZING UWB PLANAR ANTENNA COMPRISING A SLIT IN THE CONDUCTOR PLANES . IIUM Engineering Journal, 20(2), 90–104. https://doi.org/10.31436/iiumej.v20i2.1097

Issue

Section

Electrical, Computer and Communications Engineering