A RANS K-? SIMULATION OF 2D TURBULENT NATURAL CONVECTION IN AN ENCLOSURE WITH HEATING SOURCES
DOI:
https://doi.org/10.31436/iiumej.v20i1.1040Keywords:
heat transfer, turbulent natural convection, model, enclosureAbstract
ABSTRACT: This study is conducted to investigate turbulent natural convection flow in an enclosure with thermal sources using the low-Reynolds number (LRN) k-? model. This enclosure has a cold source with temperature Tc and a hot source with temperature Th as thermal sources, other walls of the enclosure are adiabatic. The aim of this study is to predict the effect of change in Rayleigh number, repositioning of cold and hot sources, and thermal sources aspect ratio on the flow field, temperature, and rate of heat transfer. To achieve this aim, the equations of continuity, momentum, energy, turbulent kinetic energy, and kinetic energy dissipation are employed in the case of 2D turbulence with constant thermo-physical properties except the density in the buoyancy term (Boussinesq approximation). To numerically solve these equations, the finite volume method and SIMPLE algorithm are used. According to the modeling results, the most optimal temperature distribution in the enclosure is seen when the hot source is below the cold source. With decreasing distance between hot and cold sources, heat transfer rate increases. The maximal heat transfer rate is derived via study of the heating sources aspect ratio. In constant positions of cold and hot sources on a wall, the heat transfer rate increases with increasing Rayleigh number (Ra=109-1011).
ABSTAK: Kajian ini dijalankan bagi mengkaji perubahan semula jadi aliran perolakan dalam tempat tertutup dengan sumber haba menggunakan model k-? nombor Reynolds-rendah (LRN). Bekas tertutup ini mempunyai dua sumber haba iaitu sumber sejuk dengan suhu Tc dan sumber panas dengan suhu Th, manakala dinding lain bekas ini adalah adiabatik. Tujuan kajian ini adalah bagi mengesan perubahan nombor Rayleigh, mengubah sumber sejuk dan panas dan nisbah sumber haba kepada kawasan aliran, suhu dan halaju perubahan haba. Bagi mencapai tujuan tersebut, persamaan sambungan, momentum, tenaga, tenaga kinetik perolakan, dan pengurangan tenaga kinetik telah dilaksanakan dalam kes perolakan 2D dengan sifat fizikal-haba berterusan (malar) kecuali isipadu terma keapungan (anggaran Boussinesq). Bagi menyelesaikan persamaan ini secara berangka, kaedah isipadu terhad dan algorithma MUDAH telah digunakan. Berdasarkan keputusan model, suhu distribusi optimal dalam bekas tertutup dilihat apabila sumber panas adalah kurang daripada sumber sejuk. Dengan pengurangan jarak antara sumber panas dan sejuk, kadar pertukaran haba meningkat. Kadar pertukaran haba maksima telah diperoleh melalui kajian nisbah aspek sumber pemanasan. Kadar pertukaran haba bertambah dengan bertambahnya nombor Rayleigh (Ra=109-1011), pada posisi tetap sumber sejuk dan panas pada dinding bekas.
Downloads
Metrics
References
Kadem S, Lachemet A,Younsi R, Kocaefe D. (2011). 3D-Transient modeling of heat and mass transfer during heat treatment of wood. International Communications in Heat and Mass Transfer, 38(6): 717-722.
Laguerre O, Benamara S, Remy D, Flick D. (2009). Experimental and numerical study of heat and moisture transfers by natural convection in a cavity filled with solid obstacles. International Journal of Heat and Mass Transfer, 52(25-26): 5691-5700.
Calcagni B, Marsili F, Paroncini M. (2005). Natural convective heat transfer in square enclosures heated from below. Applied Thermal Engineering, 25(16): 2522-2531.
Tian YS, Karayiannis TG. (2000). Low turbulence natural convection in an air filled square cavity - Part II: The Turbulence Quantities. International Journal of Heat and Mass Transfer, 43(6): 867-884.
Ampofo F, Karayiannis TG. (2003). Experimental benchmark data for turbulent natural convection in an air filled square cavity. International Journal of Heat and Mass Transfer, 46(19): 3551-3572.
Dafa Alla AA, Betts PL. (1996). Experimental study of turbulent natural convection in a tall air cavity. Experimental Heat Transfer, 9(2): 165-194.
Penot F, Skurtys O, Saury D. (2010). Preliminary experiments on the control of natural convection in differentially-heated cavities. International Journal of Thermal Sciences, 49(10): 1911-1919.
Chen W, Liu W. (2004). Numerical and experimental analysis of convection heat transfer in passive solar heating room with greenhouse and heat storage. Solar Energy, 76(5):623-633.
Saury D, Rouger N, Djanna F, Penot F. (2011). Natural Convection in an Air-Filled Cavity: Experimental Results at Large Rayleigh Numbers. International Communications in Heat and Mass Transfer, 38(6): 679-687.
Barakos E, Mitsoulis G, Assimacopoulos D. (1994). Natural-Convection Flow in a Square Cavity Revisited- Laminar and Turbulent Models with Wall Functions. International Journal for Numerical Methods in Fluids, 18(7): 695-719.
Elder JW. (1965). Turbulent free convection in a vertical slot. J. Fluid Mechanics, 23(1): 99-111.
Giel PW, Schmidt W. (1986). Experiment study of high Rayleigh number natural convection in an enclosure. 8th International heat transfer conference, 4: 1459-1464.
Cheesewright R. (1968). Turbulent natural convection from a vertical plane surface. J. Heat Transfer, 90(1): 1-6.
Olsen DA, Glicksman LR, Ferm HM. (1990). Steady state natural convection in an empty and partitioned enclosure at high Rayleigh numbers. J. Heat Transfer, 112(3): 640-647.
Chen Q. (1996). Prediction of room air motion by Reynolds-Stress models. Building and Environment, 31: 233-244.
Ince NZ, Launder BE. (1989). On the computation of buoyancy-driven turbulent flows in rectangular enclosures. International journal of heat and fluid flow, 10(2): 110-117.
Hanjealic K, Vasc E. (1993). Computation of Turbulent natural convection in rectangular Enclosure with algebraic flux model. Interntional Journal of Heat and Mass Transfer, 36(14): 3603-3624.
Sigey JK, Gatheri FK, Kinyanjui M. (2004). Numerical study of free convection turbulent heat transfer in an enclosure. Energy Conversion and Management, 45(15-16): 2571-2582.
Ji Y. (2014). CFD Modelling of Natural Convection in Air Cavities. CFD Letters, 6(1): 15-31.
Henkes RAWM, Van Der Vlugt FF, Hoogendoom FF. (1991). Natural convection flow in a square cavity calculated with low-Reynolds-number turbulence models. International Journal of Heat and Mass Transfer, 34(2): 377-388.
Penot F, Skurtys O, Saury D. (2010). Preliminary experiments on the control of natural convection in differentially-heated cavities. International Journal of Thermal Sciences, 49(10): 1911-1919.
Versteeg HK, Malalasekera W. (2007). An Introduction to Computational Fluid Dynamics. The Finite Volume Method Approach, Pearson education limited, USA, 2th Ed.
[23] Wilcox DC. (1994). Simulation of transition with a two-equation turbulence model. AIAA Journal, 32(2): 247-255.
Davidson L, Farhanieh B. (1991). CALC-BFC: A finite-volume code employing collocated variable arrangement and Cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries. Report 92/4, Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Gothenburg, Sweden.
Ahmadi M. (2017). Natural Convective Heat Transfer in a Porous Medium within a Two Dimension Enclosure. IIUM Engineer Journal, 18(2): 196–211.
Van Leer B. (1974). Towards the ultimate conservative difference scheme: Monotonicity and conservation combined in a second order scheme. Journal of Computational Physics, 14(4): 361-370.
Ahmadi M, Khosravi Farsani A. (2018). CFD Simulation of Non-Newtonian Two-Phase Fluid Flow Through a Channel with a Cavity. Thermal science, online First. DOI:10.2298/TSCI180102151A DOI: https://doi.org/10.2298/TSCI180102151A
Hoffmann KA, Chiang ST. (1993). Computational fluid dynamics for engineers. Engineering Education System, Wichita, USA.