• Sayyed Majid Mazinani Imam Reza International University
  • Sara Moshtaghi Imam Reza International University
Keywords: spectrum, energy, router, sensor network


ABSTRACT: Cognitive radio sensor network (CRSN) is a new generation of communication systems that wants to solve the overcrowded spectrum utilization of the unlicensed bands. It has combined sensor networks and cognitive radio technology, so it has the challenges of energy restriction of sensors and also dynamic spectrum access of the cognitive radio network. On the other hand, considering both of these challenges in the routing protocol plays a basic role in network performance and we can’t apply the routing protocols that have been proposed for wireless sensor networks and cognitive radio networks, separately, in the CRSN. Therefore, this article has tried to provide a new spectrum and energy-aware routing protocol in which the source is able to choose the most stable route in the aspect of node residual energy or spectrum access probability. Not only can considering the nodal residual energy and spectrum access in the route discovery process avoid repetitive link failure, but it also can increase the network lifetime. This protocol has been compared with ESAC, SCR, ERP, and SER. The result of this comparison has shown that our protocol reduces end-to-end delay, control overhead, throughput, and lifetime in comparison to other protocols, especially in small-scale networks.

ABSTRAK: Rangkaian sensor radio kognitif (CRSN) adalah generasi baru sistem telekomunikasi bagi menyelesaikan masalah kesesakan pada pemakaian band spektrum tidak berlesen. Ianya adalah kombinasi rangkaian sensor dan teknologi radio kognitif. Oleh itu, ia mempunyai cabaran sekatan tenaga pada sensor dan kemasukan spektrum secara dinamik pada rangkaian radio kognitif. Pada masa sama, dengan mengambil kira kedua-dua cabaran pada protokol rangkaian ini telah memainkan peranan asas pada prestasi rangkaian dan kami tidak boleh mengguna pakai protokol rangkaian yang telah diguna pakai pada rangkaian sensor tanpa wayar dan rangkaian radio kognitif secara asing dalam CRSN. Oleh itu, artikel ini cuba menyediakan spektrum baru dan pengawasan tenaga pada protokol rangkaian, di mana sumber boleh memilih laluan rangkaian yang stabil dengan mengambil kira pada aspek baki tenaga  nod atau kebarangkalian akses spektrum. Selain itu, ianya dapat mengelakkan kegagalan laluan berulang juga menambahkan jangka hayat rangkaian. Protokol ini telah dibandingkan dengan ESAC, SCR, ERP dan SER. Perbandingan keputusan menunjukkan protokol ini mengurangkan kelewatan hujung-ke-hujung, mengawal kesesakan, mambaiki jumlah penghantaran dan menambah tempoh hayat berbanding protokol lain, khususnya pada rangkaian skala kecil.


Download data is not yet available.

Author Biography

Sayyed Majid Mazinani, Imam Reza International University
Electrical Engineering Department Assistant Professor


Mitola J. (1999) Software radio architecture: A mathematical perspective. IEEE Journal on selected areas in communications., 17(4):514-538.

Li B, Li D, Wu QH, Li H. (2009) ASAR: Ant-based spectrum aware routing for cognitive radio networks. In Wireless Communications & Signal Processing: November 2009; WCSP 2009. International Conference on.IEEE; pp 1-5.

Shi Y, Hou YT, Kompella S, Sherali HD. (2011) Maximizing capacity in multi-hop cognitive radio networks under the SINR model. IEEE Transactions on Mobile Computing., 10(7):954-967.

Song Y, He X, Binsack RV. (2017) Energy Aware Routing Protocol for Cognitive Radio Networks. Wireless Sensor Network., 9(03):103.

Saleem Y, Salim F,Rehmani MH. (2015) Routing and channel selection from cognitive radio network’s perspective: A survey. Computers & Electrical Engineering., 42:117-134.

Tang F, Tang C, Yang Y, Yang LT, Zhou T, Li J, Guo M. (2017) Delay-minimized routing in mobile cognitive networks for time-critical applications. IEEE Transactions on Industrial Informatics., 13(3):1398-1409.‏

Oey CH, Christian I, Moh S. (2012) Energy-and cognitive-radio-aware routing in cognitive radio sensor networks. International Journal of Distributed Sensor Networks., 8(12):636723.

Sarma HKD, Bhuyan B, Dutta N. (2013) An energy balanced routing protocol for cognitive wireless sensor networks. In World Congress on Engineering & Computer Science: October 2013; San Francisco, USA.

Chouikhi S, El Korbi I, Ghamri-Doudane Y, Saidane LA. (2015) A survey on fault tolerance in small and large-scale wireless sensor networks. Computer Communications., 69:22-37.

Clausen T, Jacquet P. (2003) Optimized link state routing protocol (OLSR)., (No. RFC 3626).

Royer EM, Perkins CE. (1999) Multicast operation of the ad-hoc on-demand distance vector routing protocol. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking: August 1999; ACM; pp 207-218.

Al-Karaki JN, Kamal AE. (2004) Routing techniques in wireless sensor networks: a survey. IEEE wireless communications, 11(6), 6-28.

Ozger M, Akan OB. (2013). Event-driven spectrum-aware clustering in cognitive radio sensor networks. In INFOCOM, 2013 Proceedings IEEE: April 2013; IEEE; pp 1483-1491.

Shah, GA, Akan, OB. (2013). Spectrum-aware cluster-based routing for cognitive radio sensor networks. In Communications (ICC), 2013 IEEE International Conference on: June 2013; IEEE; pp 2885-2889.

Tabassum M, Razzaque MA, Miazi MNS, Hassan MM., Alelaiwi A, Alamri A. (2016) An energy-aware event-driven routing protocol for cognitive radio sensor networks. Wireless Networks., 22(5):1523-1536.

Kamruzzaman SM, Kim E, Jeong DG. (2011) Spectrum and energy aware routing protocol for cognitive radio ad hoc networks. In Communications (ICC), 2011 IEEE International Conference on: June 2011; IEEE; pp 1-5.

Lo BF, Akyildiz IF. (2013) Reinforcement learning for cooperative sensing gain in cognitive radio ad hoc network. Wireless Networks (Springer)., 19(6):1237-1250

Singh JSP, Rai MK, Singh J, Kang AS. (2014) Trade-off between AND and OR detection method for cooperative sensing in cognitive radio. In Advance Computing Conference (IACC), 2014 IEEE International: February 2014; IEEE; pp 395-399.

Singh JSP, Singh R, Rai MK, Singh J, Kang AS. (2015) Cooperative sensing for cognitive radio: A powerful access method for shadowing environment. Wireless Personal Communications., 80(4):1363-1379.

Langendoen K, Reijers N. (2003) Distributed localization in wireless sensor networks: A quantitative comparison. Computer Networks., 43(4):499–518.

Xiao B, Chen L, Xiao Q, Li M. (2010) Reliable anchor-based sensor localization in irregular areas. IEEE Transactions on Mobile Computing., 9(1):60-72.

Dutta P, Culler D. (2008) Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications. In Proceedings of the 6th ACM conference on Embedded network sensor systems: November 2008; ACM; pp 71-84.

Xing X, Jing T, Cheng W, Huo Y, Cheng X. (2013) Spectrum prediction in cognitive radio networks. IEEE Wireless Communications., 20(2):90-96.

Sharma M, Sahoo A. (2010) Residual white space distribution-based opportunistic channel access for cognitive radio enabled devices. SIGCOMM Computer Communication Review., 40(4):427–428.

Singh JSP, Rai MK. (2018) CROP: Cognitive radio Routing Protocol for link quality channel diverse cognitive networks. Journal of Network and Computer Applications., 104: 48-60.

How to Cite
Mazinani, S. M., & Moshtaghi, S. (2018). A NEW SPECTRUM AND ENERGY AWARE ROUTING PROTOCOL IN COGNITIVE RADIO SENSOR NETWORK. IIUM Engineering Journal, 19(2), 118 - 133. https://doi.org/10.31436/iiumej.v19i2.927
Electrical, Computer and Communications Engineering