Silver nanoparticle biogenically synthesised by Psychotria malayana Jack: Physicochemical, cytotoxic and antimicrobial characterisations

Authors

  • Muhammad Taher Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.
  • Nur Afifah Mohd Zulkafly Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.
  • Deny Susanti Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia
  • Tengku Karmila Tengku Mohd Kamil Department of Pharmacy Practice, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.

DOI:

https://doi.org/10.31436/jop.v3i2.244

Keywords:

silver nanoparticles, P. malayana Jack, flavonoids, cytotoxic, antimicrobial

Abstract

Introduction: Silver nanoparticles are targeted for antimicrobial and cytotoxic properties to combat antimicrobial resistance and chemoresistance. Green synthesis of silver nanoparticle method is widely used because it is environmental-friendly using biological substances as reducing and stabilising agents. Psychotria malayana Jack is rich with a wide range of phytochemicals that able to synthesise silver nanoparticle. Methods: The leaves of P. malayana Jack was extracted with ethanol-water solvent via ultrasound assisted extraction and the extract was analysed using liquid chromatography- mass spectrometry (LC-MS).  The extract was then added to silver nitrate solution for 24 hours. The formation of AgNPs-PM was analysed  using  UV-visible spectrophotometry, scanning electron microscopy, zeta particle size and zeta potential analysis. The synthesised AgNPs-PM were tested for their cytotoxicity on human colorectal adenocarcinoma cells (Caco-2) and human epithelial breast adenocarcinoma cells (MCF-7) using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) colourimetric assay. For antibacterial activity, the nanoparticles were tested on Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Bacillus subtilis and Staphylococcus aureus using disc diffusion method. Results: AgNPs-PM were successfully synthesised using P. malayana Jack extract. LC-MS analysis showed the presence of  flavonoids, amino acids and heterocyclic compounds . An attempt in cytotoxic activity test showed that at concentrations between 12.5 µg/ml to 400 µg/ml of AgNPs-PM, no cytotoxic activity was observed. Whereas, in antibacterial assay, 2 mg/ml AgNPs-PM tested on the bacterial strains showed weak inhibition on their growth. Conclusion: AgNPs-PM has been successfully  synthesised and characterised. However, the AgNPs-PM possess low bioactivities of cytotoxic and antibacterial activities.

 

Author Biographies

Muhammad Taher, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.

 

 

Nur Afifah Mohd Zulkafly, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.

 

 

Deny Susanti, Department of Chemistry, Faculty of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia

 

 

Tengku Karmila Tengku Mohd Kamil, Department of Pharmacy Practice, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, Pahang, Malaysia.

 

 

References

Ahmad, N., Fozia, Jabeen, M., Haq, Z. U., Ahmad, I., Wahab, A., … Khan, M. Y. (2022). Green Fabrication of Silver Nanoparticles using Euphorbia serpens Kunth Aqueous Extract, Their Characterization, and Investigation of Its in Vitro Antioxidative, Antimicrobial, Insecticidal, and Cytotoxic Activities. BioMed Research International, 2022. https://doi.org/10.1155/2022/5562849

Ahmed, O., Sibuyi, N. R. S., Fadaka, A. O., Madiehe, M. A., Maboza, E., Meyer, M., & Geerts, G. (2022, February 1). Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics, Vol. 14. MDPI. https://doi.org/10.3390/pharmaceutics14020380

Al-Abd, N. M., Mohamed Nor, Z., Mansor, M., Azhar, F., Hasan, M. S., & Kassim, M. (2015). Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complementary and Alternative Medicine, 15(1). https://doi.org/10.1186/s12906-015-0914-y

Alarjani, K. M., Hussein, D., Rasheed, R. A., & Kalaiyarasi, M. (2022). Green synthesis of silver nanoparticles by Pisum sativum L. (pea) pod against multidrug resistant foodborne pathogens. Journal of King Saud University - Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101897

Alyami, N. M., Alyami, H. M., & Almeer, R. (2022). Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: an in vitro study using hepatocellular carcinoma (HepG2). Cancer Nanotechnology, 13(1). https://doi.org/10.1186/s12645-022-00132-z

Anbumani, D., Dhandapani, K. vizhi, Manoharan, J., Babujanarthanam, R., Bashir, A. K. H., Muthusamy, K., … Kanimozhi, K. (2022). Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University - Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101896

Bimakr, M., Ganjloo, A., Zarringhalami, S., & Ansarian, E. (2017). Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Science and Biotechnology, 26(6), 1481–1490. https://doi.org/10.1007/s10068-017-0229-5

Buszewski, B., Railean-Plugaru, V., Pomastowski, P., Rafi?ska, K., Szultka-Mlynska, M., Golinska, P., … Dahm, H. (2018). Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. Journal of Microbiology, Immunology and Infection, 51(1), 45–54. https://doi.org/10.1016/j.jmii.2016.03.002

Calixto, N. O., Pinto, M. E. F., Ramalho, S. D., Burger, M. C. M., Bobey, A. F., Young, M. C. M., … Pinto, A. C. (2016, August 1). The genus psychotria: Phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. Journal of the Brazilian Chemical Society, Vol. 27, pp. 1355–1378. Sociedade Brasileira de Quimica. https://doi.org/10.5935/0103-5053.20160149

Eze, F. N., Tola, A. J., Nwabor, O. F., & Jayeoye, T. J. (2019). Centella asiatica phenolic extract-mediated bio-fabrication of silver nanoparticles: Characterization, reduction of industrially relevant dyes in water and antimicrobial activities against foodborne pathogens. RSC Advances, 9(65), 37957–37970. https://doi.org/10.1039/c9ra08618h

Fard, S. E., Tafvizi, F., & Torbati, M. B. (2018). Silver nanoparticles biosynthesised using Centella asiatica leaf extract: apoptosis induction in MCF?7 breast cancer cell line. IET Nanobiotechnology, 12(7), 994–1002. https://doi.org/10.1049/iet-nbt.2018.5069

Gavas, S., Quazi, S., & Karpi?ski, T. M. (2021). Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 16, 173. https://doi.org/10.1186/s11671-021-03628-6

Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The mtt assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312827

Goyal, B., Verma, N., Kharewal, T., Gahlaut, A., & Hooda, V. (2022). Structural effects of nanoparticles on their antibacterial activity against multi-drug resistance. Inorganic and Nano-Metal Chemistry. Taylor and Francis Ltd. https://doi.org/10.1080/24701556.2021.2025103

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and Cytotoxic Properties of Silver Nanoparticles. International Journal of Molecular Sciences, 20(2), 449–449.

Makarov, V. V, Love, A. J., Sinitsyna, O. V, Makarova, S. S., Yaminsky, I. V, Taliansky, M. E., & Kalinina, N. O. (2014). ‘Green’ Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants (Vol. 6).

Mazayen, Z. M., Ghoneim, A. M., Elbatanony, R. S., Basalious, E. B., & Bendas, E. R. (2022). Pharmaceutical nanotechnology: from the bench to the market. Future Journal of Pharmaceutical Sciences, 8(1). https://doi.org/10.1186/s43094-022-00400-0

Muhamad, M., Ab. Rahim, N., Wan Omar, W. A., & Nik Mohamed Kamal, N. N. S. (2022). Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines. Bioinorganic Chemistry and Applications, 2022, 1–22. https://doi.org/10.1155/2022/8546079

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Nadaf, S. J., Jadhav, N. R., Naikwadi, H. S., Savekar, P. L., Sapkal, I. D., Kambli, M. M., & Desai, I. A. (2022, November 1). Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano, Vol. 8. Elsevier Inc. https://doi.org/10.1016/j.onano.2022.100076

Nguyen, N. H., Nhi, T. T. Y., Van Nhi, N. T., Cuc, T. T. T., Tuan, P. M., & Nguyen, D. H. (2021). Comparative Study of the Silver Nanoparticle Synthesis Ability and Antibacterial Activity of the Piper Betle L. And Piper Sarmentosum Roxb. Extracts. Journal of Nanomaterials, 2021. https://doi.org/10.1155/2021/5518389

Nipun, T. S., Khatib, A., Ahmed, Q. U., Nasir, M. H. M., Supandi, F., Taher, M., & Saiman, M. Z. (2021). Preliminary phytochemical screening, in vitro antidiabetic, antioxidant activities, and toxicity of leaf extracts of Psychotria malayana Jack. Plants, 10(12). https://doi.org/10.3390/plants10122688

Nipun, T. S., Khatib, A., Ahmed, Q. U., Redzwan, I. E., Ibrahim, Z., Khan, A. Y. F., … El-Seedi, H. R. (2020). Alpha-Glucosidase inhibitory effect of psychotria malayana Jack Leaf: A rapid analysis using infrared fingerprinting. Molecules, 25(18). https://doi.org/10.3390/molecules25184161

Patil, M. P., & Kim, G. Do. (2017, January 1). Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Applied Microbiology and Biotechnology, Vol. 101, pp. 79–92. Springer Verlag. https://doi.org/10.1007/s00253-016-8012-8

Patra, J. K., & Baek, K. H. (2014). Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. Journal of Nanomaterials, Vol. 2014. Hindawi Limited. https://doi.org/10.1155/2014/417305

Shelembe, B., Mahlangeni, N., & Moodley, R. (2022). Biosynthesis and bioactivities of metal nanoparticles mediated by Helichrysum aureonitens. Journal of Analytical Science and Technology, 13(1). https://doi.org/10.1186/s40543-022-00316-7

Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79–84. https://doi.org/10.1007/s00449-008-0224-6

Suriyakala, G., Sathiyaraj, S., Babujanarthanam, R., Alarjani, K. M., Hussein, D. S., Rasheed, R. A., & Kanimozhi, K. (2022). Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity. Journal of King Saud University - Science, 34(3). https://doi.org/10.1016/j.jksus.2022.101830

Susanti, D., Haris, M. S., Taher, M., & Khotib, J. (2022, June 2). Natural Products-Based Metallic Nanoparticles as Antimicrobial Agents. Frontiers in Pharmacology, Vol. 13. Frontiers Media S.A. https://doi.org/10.3389/fphar.2022.895616

van der Zande, M., Undas, A. K., Kramer, E., Monopoli, M. P., Peters, R. J., Garry, D., … Bouwmeester, H. (2016). Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology, 10(10), 1431–1441. https://doi.org/10.1080/17435390.2016.1225132

Wang, L., Hu, C., & Shao, L. (2017, February 14). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, Vol. 12, pp. 1227–1249. Dove Medical Press Ltd. https://doi.org/10.2147/IJN.S121956

Ye, L., Cao, Z., Liu, X., Cui, Z., Li, Z., Liang, Y., … Wu, S. (2022, May 25). Noble metal-based nanomaterials as antibacterial agents. Journal of Alloys and Compounds, Vol. 904. Elsevier Ltd. https://doi.org/10.1016/j.jallcom.2022.164091

Zein, R., Alghoraibi, I., Soukkarieh, Ch., Salman, A., & Alahmad, A. (n.d.). In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves.

Zhang, D., Ma, X. L., Gu, Y., Huang, H., & Zhang, G. W. (2020, October 29). Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Frontiers in Chemistry, Vol. 8. Frontiers Media S.A. https://doi.org/10.3389/fchem.2020.00799

Downloads

Published

2023-07-31

How to Cite

Taher, M., Mohd Zulkafly, N. A. ., Susanti, D., & Tengku Mohd Kamil, T. K. (2023). Silver nanoparticle biogenically synthesised by Psychotria malayana Jack: Physicochemical, cytotoxic and antimicrobial characterisations. Journal of Pharmacy, 3(2), 140–153. https://doi.org/10.31436/jop.v3i2.244

Issue

Section

Original Articles