Preparation, Characterisation and Bioactivity Evaluation of Curcumin-Loaded Poly (Lactic-co-Glycolic Acid) Nanoparticles

Authors

  • Muhammad Haziq Ezzani Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. https://orcid.org/0009-0001-3885-3557
  • Deny Susanti Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia https://orcid.org/0000-0002-5345-1150
  • Muhammad Taher Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia https://orcid.org/0000-0002-1463-3090
  • Syamsudin Abdilah Faculty of Pharmacy, Pancasila University, Srengseng Sawah, 12630, Jakarta, Indonesia.

DOI:

https://doi.org/10.31436/jop.v4i2.304

Keywords:

Curcuma xanthorrhiza, turmeric, bioactivity, analytical, PLGA, curcumin

Abstract

Background: One of the main challenges with curcumin is its hydrophobic nature, which limits its solubility and bioavailability. This issue can be addressed by using poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). The small size and large surface area of these NPs significantly enhance drug delivery systems by improving the solubility and bioavailability of the drug. Objective: This project focuses on the preparation, characterization, and bioactivity evaluation of curcumin loaded in PLGA NPs, intended for the delivery of curcumin extracted from Curcuma xanthorrhiza, commonly known as ‘temulawak’ or ‘Java turmeric’. Methodology: Curcumin was extracted and stored at 4?C for testing. PLGA-curcumin NPs were synthesized using the single emulsion method. Nanoparticle morphology was analyzed using SEM, while particle size and zeta potential were measured with a Zetasizer. Entrapment efficiency and drug loading capacity were calculated. In vitro release studies in phosphate buffer were conducted using UV-visible spectrophotometry. The cytotoxicity of the curcumin-loaded NPs was tested on MCF-7 breast cancer cells using the MTT assay. Statistical analyses were performed using Minitab 14, and Microsoft Excel was used for graphical representations, with significance set at p < 0.05. Results: The mean particle size of the curcumin NPs was 498.9 nm ± 597.4 nm. The entrapment efficiency and drug loading capacity were 50% and 5%, respectively. The average zeta potential was recorded as -28.7 mV ± 6.19 mV.  The in vitro release study did not produce significant results as low concentrations of curcumin were detected. However, the bioactivity of the curcumin-loaded PLGA NPs demonstrated lower cell viability compared to the curcumin extract, suggesting that the PLGA formulation is more effective at inducing cancer cell death. This indicates its potential as a more efficient therapeutic option in cancer treatment. Conclusion: The single emulsion method managed to produce nano-sized particles with good zeta potential and bioactivity on MCF-7 cells. However, further study needs to be done to produce better formulation which can increase entrapment efficiency, drug loading capacity and also in vitro release profile.

References

Arozal, W., Louisa, M., Rahmat, D., Chendrana, P., & Sandhiutami, N. M. D. (2020). Development, Characterization and Pharmacokinetic Profile of Chitosan-Sodium Tripolyphosphate Nanoparticles Based Drug Delivery Systems for Curcumin. Advanced Pharmaceutical Bulletin, 11(1), 77–85. https://doi.org/10.34172/apb.2021.008

Dei Cas, M., & Ghidoni, R. (2019). Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 11(9), 2147. https://doi.org/10.3390/nu11092147

Feczkó, T., Tóth, J., Dósa, G., & Gyenis, J. (2011). Influence of process conditions on the mean size of PLGA nanoparticles. Chemical Engineering and Processing: Process Intensification, 50(8), 846–853.

Garms, B. C., Poli, H., Baggley, D., Han, F. Y., Whittaker, A. K., A, A., & Grøndahl, L. (2021). Evaluating the effect of synthesis, isolation, and characterisation variables on reported particle size and dispersity of drug loaded PLGA nanoparticles. Materials Advances, 2(17), 5657–5671. https://doi.org/10.1039/D1MA00410G

Guo, X., Zuo, X., Zhou, Z., Gu, Y., Zheng, H., Wang, X., Wang, G., Xu, C., & Wang, F. (2023). PLGA-Based Micro/Nanoparticles: An Overview of Their Applications in Respiratory Diseases. International Journal of Molecular Sciences, 24(5), 4333. https://doi.org/10.3390/ijms24054333

Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials. The AAPS Journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8

Halayqa, M., & Doma?ska, U. (2014). PLGA Biodegradable Nanoparticles Containing Perphenazine or Chlorpromazine Hydrochloride: Effect of Formulation and Release. International Journal of Molecular Sciences, 15(12), 23909–23923. https://doi.org/10.3390/ijms151223909

Hassanzadeh, K., Buccarello, L., Dragotto, J., Mohammadi, A., Corbo, M., & Feligioni, M. (2020). Obstacles against the Marketing of Curcumin as a Drug. International Journal of Molecular Sciences, 21(18), 6619. https://doi.org/10.3390/ijms21186619

Hegde, M., Girisa, S., BharathwajChetty, B., Vishwa, R., & Kunnumakkara, A. B. (2023). Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega, 8(12), 10713–10746. https://doi.org/10.1021/acsomega.2c07326

Karthikeyan, A., Senthil, N., & Min, T. (2020). Nanocurcumin: A Promising Candidate for Therapeutic Applications. Frontiers in Pharmacology, 11, 487. https://doi.org/10.3389/fphar.2020.00487

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Lanao, R. P. F., Jonker, A. M., Wolke, J. G. C., Jansen, J. A., Van Hest, J. C. M., & Leeuwenburgh, S. C. G. (2013). Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration. Tissue Engineering Part B: Reviews, 19(4), 380–390. https://doi.org/10.1089/ten.teb.2012.0443

Mainardes, R. M., & Evangelista, R. C. (2005). PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. International Journal of Pharmaceutics, 290(1-2), 137–144. doi:10.1016/j.ijpharm.2004.11.027

McCall, R. L., & Sirianni, R. W. (2013). PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS. Journal of Visualized Experiments, 82, 51015. https://doi.org/10.3791/51015

Mogollon, C. (2016). In Vitro Release of Curcumin from Polymeric Nanoparticles Using Two-Phase System (Doctoral dissertation, University of Illinois at Chicago).

Operti, M. C., Bernhardt, A., Grimm, S., Engel, A., Figdor, C. G., & Tagit, O. (2021). PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. International Journal of Pharmaceutics, 605, 120807. https://doi.org/10.1016/j.ijpharm.2021.120807

Rahmat, E., Lee, J., & Kang, Y. (2021). Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evidence-Based Complementary and Alternative Medicine, 2021, 1–15. https://doi.org/10.1155/2021/9960813

Salleh, N. M., Ismail, S., & Ab Halim, M. (2016). Effects of Curcuma xanthorrhiza extracts and their constituents on phase ii drug-metabolizing enzymes activity. Pharmacognosy Research, 8(4), 309. https://doi.org/10.4103/0974-8490.188873

Tabatabaei Mirakabad, F.S., Akbaezadeh, A. Milani, M., Zarghami, N., Taheri-Anganeh, M., Zeighamian, V., … & Rahmati-Yamchi, M. (2016). A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial cells, nanomedicine, and biotechnology, 44(1), 423-430.

Tahara, K., Karasawa, K., Onodera, R., & Takeuchi, H. (2017). Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. Asian Journal of Pharmaceutical Sciences, 12(4), 394–399. doi:10.1016/j.ajps.2017.03.002

Downloads

Published

2024-07-31

How to Cite

Ezzani, M. H., Susanti, D., Taher, M., & Abdilah, S. (2024). Preparation, Characterisation and Bioactivity Evaluation of Curcumin-Loaded Poly (Lactic-co-Glycolic Acid) Nanoparticles. Journal of Pharmacy, 4(2), 165–175. https://doi.org/10.31436/jop.v4i2.304

Issue

Section

Original Articles