Ethnopharmacology of Psychotria: Potential Use of P. malayana Jack Leaves as Antidiabetic Agent

Main Article Content

Sharifah Nurul Akilah Syed Mohamad
Alfi Khatib
Siti Zaiton Mat Soád
Qamar Uddin Ahmed
Zalikha Ibrahim

Abstract

This review provides a comprehensive exploration of the Psychotria species, a genus of plants known for their medicinal properties and traditional uses. The focus is on the species’ ethnomedicinal applications, their potential as an antidiabetic agent, the pharmacologically active antidiabetic compounds possessed, and their toxicological profiles. The escalating global prevalence of diabetes underscores the need for alternative therapeutic agents. The Psychotria species, with their antidiabetic properties, present a promising area of research. The traditional medicinal uses of the Psychotria species across various cultures are examined, providing valuable insights for the development of novel treatments. This review delves into the mechanisms through which these species exert their antidiabetic effects especially Psychotria malayana. The review discusses the pharmacologically active compounds unique to these species, which are of considerable interest for drug development in diabetes treatment. A summary of these studies and their implications is presented. Finally, the review addresses the toxicological studies on the Psychotria species, assessing their safety as therapeutic agents.

Article Details

How to Cite
Syed Mohamad, S. N. A. ., Khatib, A., Mat Soád, S. Z. ., Ahmed, Q. U. ., & Ibrahim, Z. . (2025). Ethnopharmacology of Psychotria: Potential Use of P. malayana Jack Leaves as Antidiabetic Agent . Journal of Pharmacy, 5(1), 156–169. https://doi.org/10.31436/jop.v5i1.341
Section
Review Articles
Author Biography

Alfi Khatib, International Islamic University Malaysia

 

 

References

Abhishek, M., Somashekaraiah, B. V., & Dharmesh, S. M. (2019). In vivo antidiabetic and antioxidant potential of Psychotria dalzellii in streptozotocin-induced diabetic rats. South African Journal of Botany, 121, 494–499. https://doi.org/10.1016/J.SAJB.2018.12.006 DOI: https://doi.org/10.1016/j.sajb.2018.12.006

Anvar, K., & Haneef, J. (2015). Ethnobotanical plants used for postnatal care by traditional practitioners from Kozhikode District, Kerala, India. International Journal of Research in Pharmacy and Chemistry, 5(4), 570-581.

Ayyanar, M., & Ignacimuthu, S. (2009). Herbal medicines for wound healing among tribal people in southern India: Ethnobotanical and scientific evidences. International Journal of Applied Research in Natural Products, 3(3), 29-42.

Babu, S., & Jayaraman, S. (2020). An update on ?-sitosterol: A potential herbal nutraceutical for diabetic management. Biomedicine & Pharmacotherapy, 131, 110702. https://doi.org/10.1016/j.biopha.2020.110702 DOI: https://doi.org/10.1016/j.biopha.2020.110702

Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C., & Bouyahya, A. (2022). Health benefits and pharmacological properties of stigmasterol. Antioxidants, 11(10), 1912. https://doi.org/10.3390/antiox11101912 DOI: https://doi.org/10.3390/antiox11101912

Benchoula, K., Khatib, A., Quzwain, F. M. C., Che Mohamad, C. A., Wan Sulaiman, W. M. A., Abdul Wahab, R., Ahmed, Q. U., Abdul Ghaffar, M., Saiman, M. Z., Alajmi, M. F., & El-Seedi, H. (2019). Optimisation of hyperglycaemic induction in zebrafish and evaluation of its blood glucose level and metabolite fingerprint treated with Psychotria malayana Jack leaf extract. Molecules, 24(8), 1506. https://doi.org/10.3390/molecules24081506 DOI: https://doi.org/10.3390/molecules24081506

Benevides, P. J. C., Young, M. C. M., & Bolzani, V. D. S. (2005). Biological activities of constituents from Psychotria spectabilis. Pharmaceutical Biology, 42(8), 565-569. https://doi.org/10.1080/13880200490901780 DOI: https://doi.org/10.1080/13880200490901780

Bhat, P., Hegde, G., & Hegde, G. R. (2012). Ethnomedicinal practices in different communities of Uttara Kannada district of Karnataka for treatment of wounds. Journal of Ethnopharmacology, 143(2), 501–514. https://doi.org/10.1016/j.jep.2012.07.003 DOI: https://doi.org/10.1016/j.jep.2012.07.003

Bhatnagar, A., & Mishra, A. (2022). Alpha-Glucosidase inhibitors for diabetes/blood sugar regulation. In V. L. Maheshwari, & R. H. Patil (Eds.), Natural products as enzyme inhibitors. Springer. DOI: https://doi.org/10.1007/978-981-19-0932-0_12

Biswas, A., Bari, M. A., Roy, M., & Bhadra, S. K. (2010). Inherited folk pharmaceutical knowledge of tribal people in the Chittagong Hill tracts, Bangladesh. Indian Journal of Traditional Knowledge, 9(1), 77-89.

Bolton, J. L., & Dunlap, T. (2017). Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chemical Research in Toxicology, 30(1), 13–37. https://doi.org/10.1021/acs.chemrestox.6b00256 DOI: https://doi.org/10.1021/acs.chemrestox.6b00256

Bremer, B. (2009). A review of molecular phylogenetic studies of Rubiaceae. Annals of the Missouri Botanical Garden, 96(1), 4-26. http://dx.doi.org/10.3417/2006197 DOI: https://doi.org/10.3417/2006197

Bristy, T. A., Barua, N., Montakim Tareq, A., Sakib, S. A., Etu, S. T., Chowdhury, K. H., Jyoti, M. A., Aziz, M. A., Reza, A. S. M. A., Caiazzo, E., Romano, B., Tareq, S. M., Emran, T. B., & Capasso, R. (2020). Deciphering the pharmacological properties of methanol extract of Psychotria calocarpa leaves by in vivo, in vitro and in silico approaches. Pharmaceuticals, 13(8), 183. https://doi.org/10.3390/ph13080183 DOI: https://doi.org/10.3390/ph13080183

Britannica, T. (2020, February 10). Rubiaceae. Encyclopedia Britannica. https://www.britannica.com/plant/Rubiaceae

Britto, J. D., & Mahesh, R. (2007). Evolutionary medicine of Kani tribal’s botanical knowledge in agasthiayamalai biosphere reserve, south India. Ethnobotanical Leaflets, 31(1), 280-290.

Calixto, N. O., Pinto, M. E. F., Ramalho, S. D., Burger, M. C. M., Bobey, A. F., Young, M. C. M., Bolzani, V. S., & Pinto, A. C. (2016). The genus Psychotria: Phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. Journal of the Brazilian Chemical Society, 27(8), 1355-1378. http://dx.doi.org/10.5935/0103-5053.20160149 DOI: https://doi.org/10.5935/0103-5053.20160149

Cao, J., Yang, J.-N., Zhou, X.-Q., Zhang, Y.-Y., Zhu, X.-Y., Yue, R.-M., & Hui, Y. (2020). Chemical constituents of Psychotria hainanensis. Chemistry of Natural Compounds, 56(3). http://dx.doi.org/10.1007/s10600-020-03081-4 DOI: https://doi.org/10.1007/s10600-020-03081-4

Chen, Q., Toy, J. Y. H., Seta, C., Yeo, T. C., & Huang, D. (2021). Inhibition effect of extract of Psychotria viridiflora stem on alpha-amylase and alpha-glucosidase and its application in lowering the digestibility of noodles. Frontiers in Nutrition, 8, 701114. https://doi.org/10.3389/fnut.2021.701114 DOI: https://doi.org/10.3389/fnut.2021.701114

Choffnes, D. (2017). Chapter 4. The actions of medicinal plants on the nervous system. Nature's pharmacopeia: A world of medicinal plants (pp. 62-79). Columbia University Press. DOI: https://doi.org/10.7312/chof16660-006

Choudhury, K. D., Choudhury, M. D., Paul, S., & Baruah, M. K. (2012). Bioactivities of some ethnomedicinal rubiaceous plants available from assam – a review. East Himalayan Society for Spermatophyte Taxonomy, 6(1), 56 - 65.

Coe, F. G. (2008). Ethnomedicine of the rama of southeastern Nicaragua. Journal of Ethnobiology, 28(1), 1–38. https://doi.org/10.2993/0278-0771_2008_28_1_eotros_2.0.co_2 DOI: https://doi.org/10.2993/0278-0771(2008)28[1:EOTROS]2.0.CO;2

Dandekar, P. D., Kotmale, A. S., Chavan, S. R., Kadlag, P. P., Sawant, S. V., Dhavale, D. D., & RaviKumar, A. (2021). Insights into the inhibition mechanism of human pancreatic alpha-amylase, a type 2 diabetes target, by dehydrodieugenol B isolated from Ocimum tenuiflorum. ACS Omega, 6(3), 1780–1786. https://doi.org/10.1021/acsomega.0c00617 DOI: https://doi.org/10.1021/acsomega.0c00617

Devadoss, S., Murugaiyan, I., Rajan, M., & Thangaraj, P. (2013). Evaluation of phytochemical, antioxidant, and antimicrobial properties of ethnomedicinal plant Psychotria Nilgiriensis Deb. & Gang. International Journal of Pharmacy and Pharmaceutical Sciences, 5(3), 417–422.

Elisabetsky, E., Amador, T. A., Albuquerque, R. R., Nunes, D. S., & Carvalho, A. doC. (1995). Analgesic activity of Psychotria colorata (Willd. ex R. & S.) Muell. Arg. alkaloids. Journal of Ethnopharmacology, 48(2), 77–83. https://doi.org/10.1016/0378-8741(95)01287-n DOI: https://doi.org/10.1016/0378-8741(95)01287-N

Fisher, H. H. (1973). Origin and uses of ipecac. Economic Botany, 27(2), 231–234. https://doi.org/10.1007/BF02872992 DOI: https://doi.org/10.1007/BF02872992

Focho, D. A., Tacham, W. N., & Fonge, B. A. (2009). Medicinal plants of Aguambu – Bamumbu in the Lebialem highlands, southwest province of Cameroon. African Journal of Pharmacy and Pharmacology, 3(1), 001–013.

Fokoua, A. R., Ndjenda, M. K., 2nd, Kaptué Wuyt, A., Tatsinkou Bomba, F. D., Dongmo, A. K., Chouna, R., Nkeng-Efouet, P. A., & Nguelefack, T. B. (2021). Anticonvulsant effects of the aqueous and methanol extracts from the stem bark of Psychotria camptopus Verdc. (Rubiacaea) in rats. Journal of Ethnopharmacology, 272, 113955. https://doi.org/10.1016/j.jep.2021.113955 DOI: https://doi.org/10.1016/j.jep.2021.113955

Formagio, A. S. N., Volobuff, C. R. F., Kassuya, C. A. L., Cardoso, C. A. L., do Carmo Vieira, M., Pereira, Z. V., Bagatin, M. C., & de Freitas Gauze, G. (2019). Psychotria leiocarpa extract and vincosamide reduce chemically-induced inflammation in mice and inhibit the acetylcholinesterase activity. Inflammation, 42(5), 1561–1574. https://doi.org/10.1007/s10753-019-01018-w DOI: https://doi.org/10.1007/s10753-019-01018-w

Formagio, A. S., Volobuff, C. R., Santiago, M., Cardoso, C. A., Vieira, M. doC., & Valdevina Pereira, Z. (2014). Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants, 3(4), 745–757. https://doi.org/10.3390/antiox3040745 DOI: https://doi.org/10.3390/antiox3040745

Frankova, A., Vistejnova, L., Merinas-Amo, T., Leheckova, Z., Doskocil, I., Wong Soon, J., Kudera, T., Laupua, F., Alonso-Moraga, A., & Kokoska, L. (2021). In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. Journal of Ethnopharmacology, 264, 113220. https://doi.org/10.1016/j.jep.2020.113220 DOI: https://doi.org/10.1016/j.jep.2020.113220

Gambelunghe, C., Aroni, K., Rossi, R., Moretti, L., & Bacci, M. (2008). Identification of N, N-dimethyltryptamine and beta-carbolines in psychotropic ayahuasca beverage. Biomedical Chromatography, 22(10), 1056–1059. https://doi.org/10.1002/bmc.1023 DOI: https://doi.org/10.1002/bmc.1023

Hamilton, C. W. (1989). A revision of mesoamerican Psychotria subgenus Psychotria (Rubiaceae), Part I: Introduction and species 1-16. Annals of the Missouri Botanical Garden, 76(1), 67–111. https://doi.org/10.2307/2399343 DOI: https://doi.org/10.2307/2399343

Hoult, J. R., & Payá, M. (1996). Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. General Pharmacology, 27(4), 713–722. https://doi.org/10.1016/0306-3623(95)02112-4 DOI: https://doi.org/10.1016/0306-3623(95)02112-4

Iniyavan, M., Sangeetha, D., Saravanan, S., & Parimelazhagan, T. (2012). Evaluation of antioxidant and pharmacological properties of Psychotria nilgiriensis Deb & Gang. Food Science and Biotechnology, 21(5), 1421–1431. https://doi.org/10.1007/S10068-012-0187-X DOI: https://doi.org/10.1007/s10068-012-0187-x

Jang, J. H., Park, J. E., & Han, J. S. (2018). Scopoletin inhibits alpha-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. European Journal of Pharmacology, 834, 152–156. https://doi.org/10.1016/j.ejphar.2018.07.032 DOI: https://doi.org/10.1016/j.ejphar.2018.07.032

Kalai, F. Z., Boulaaba, M., Ferdousi, F., & Isoda, H. (2022). Effects of isorhamnetin on diabetes and its associated complications: A review of in vitro and in vivo studies and a post hoc transcriptome analysis of involved molecular pathways. International Journal of Molecular Sciences, 23(2), 704. https://doi.org/10.3390/ijms23020704 DOI: https://doi.org/10.3390/ijms23020704

Kamble, M. Y., Mane, S. S., Murugan, C., & Jaisankar, I. (2008). Chapter 3 - Diversity of ethno-medicinal plants of tropical islands – with special reference to Andaman and Nicobar Islands. In C. Sivaperuman, A. Velmurugan, A. K. Singh, & I. Jaisankar (Eds.), Biodiversity and climate change adaptation in tropical islands (pp. 55-103). Elsevier Inc. DOI: https://doi.org/10.1016/B978-0-12-813064-3.00003-X

Koch A. K., Silva, P. C., & Silva, C. (2010). Reproductive biology of Psychotria carthagenensis (Rubiaceae), a distylous species of riparian forest fragments, West Central Brazil. Rodriguésia, 61(3). https://doi.org/10.1590/2175-7860201061314 DOI: https://doi.org/10.1590/2175-7860201061314

Kshirsagar, R. D., & Singh, N. P. (2001). Some less known ethnomedicinal uses from Mysore and Coorg districts, Karnataka state, India. Journal of Ethnopharmacology, 75(2-3), 231–238. https://doi.org/10.1016/s0378-8741(01)00199-4 DOI: https://doi.org/10.1016/S0378-8741(01)00199-4

Lebbie, A., Kouamé, F., & Kouassi, E. (2017). Specialization in ethnomedicinal plant knowledge among herbalists in the forest region of Rivercess County, Liberia. Journal of Medicinal Plants Research, 11(14), 264–274. http://dx.doi.org/10.5897/JMPR2017.6329 DOI: https://doi.org/10.5897/JMPR2017.6329

Lee, K. H., Lin, Y. M., Wu, T. S., Zhang, D. C., Yamagishi, T., Hayashi, T., Hall, I. H., Chang, J. J., Wu, R. Y., & Yang, T. H. (1988). The cytotoxic principles of Prunella vulgaris, Psychotria serpens, and Hyptis capitata: Ursolic acid and related derivatives. Planta Medica, 54(4), 308–311. https://doi.org/10.1055/s-2006-962441 DOI: https://doi.org/10.1055/s-2006-962441

Lezotre, P. L. (2014). State of play and review of major cooperation initiatives. International Cooperation, Convergence and Harmonization of Pharmaceutical Regulations, 7–170. https://doi.org/10.1016/B978-0-12-800053-3.00002-102.3 DOI: https://doi.org/10.1016/B978-0-12-800053-3.00002-1

Liu, Y., Wang, J. S., Wang, X. B., & Kong, L. Y. (2013). Two novel dimeric indole alkaloids from the leaves and twigs of Psychotria henryi. Fitoterapia, 86, 178–182. https://doi.org/10.1016/j.fitote.2013.03.013 DOI: https://doi.org/10.1016/j.fitote.2013.03.013

Mazimba, O. (2017). Umbelliferone: Sources, chemistry, and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55(2), 223-232. https://doi.org/10.1016/j.bfopcu.2017.05.001 DOI: https://doi.org/10.1016/j.bfopcu.2017.05.001

Mlala, S., Oyedeji, A. O., Gondwe, M., & Oyedeji, O. O. (2019). Ursolic acid and its derivatives as bioactive agents. Molecules, 24(15), 2751. https://doi.org/10.3390/molecules24152751 DOI: https://doi.org/10.3390/molecules24152751

Moraes, T. M. d. S., de Araújo, M. H., Bernardes, N. R., de Oliveira, D. B., Lasunskaia, E. B., Muzitano, M. F., & Da Cunha, M. (2011a). Antimycobacterial activity and alkaloid prospection of Psychotria species (Rubiaceae) from the Brazilian Atlantic Rainforest. Planta Medica, 77(9), 964–970. https://doi.org/10.1055/s-0030-1250656 DOI: https://doi.org/10.1055/s-0030-1250656

Moraes, T. M. d. S., Rabelo, G. R., Alexandrino, C. R., Neto, S. J. d. S., and Cunha, M. D. (2011b). Comparative leaf anatomy and micromorphology of Psychotria species (Rubiaceae) from the Atlantic Rainforest. Acta Botanica Brasilica, 25(1), 178-190. http://dx.doi.org/10.1590/S0102-33062011000100021 DOI: https://doi.org/10.1590/S0102-33062011000100021

Nepokroeff, M., Bremer, B., & Sytsma, K. J. (1999). Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Systematic Botany, 24(1), 5–27. https://doi.org/10.2307/2419383 DOI: https://doi.org/10.2307/2419383

Nipun, T. S., Khatib, A., Ahmed, Q. U., Nasir, M. H. M., Supandi, F., Taher, M., & Saiman, M. Z. (2021a). Preliminary phytochemical screening, in vitro antidiabetic, antioxidant activities, and toxicity of leaf extracts of Psychotria malayana Jack. Plants, 10(12), 2688. https://doi.org/10.3390/plants10122688 DOI: https://doi.org/10.3390/plants10122688

Nipun, T. S., Khatib, A., Ahmed, Q. U., Redzwan, I. E., Ibrahim, Z., Khan, A. Y. F., Primaharinastiti, R., Khalifa, S. A. M., & El-Seedi, H. R. (2020a). Alpha-glucosidase inhibitory effect of Psychotria malayana Jack Leaf: A rapid analysis using infrared fingerprinting. Molecules, 25(18), 4161. https://doi.org/10.3390/molecules25184161 DOI: https://doi.org/10.3390/molecules25184161

Nipun, T. S., Khatib, A., Ibrahim, Z., Ahmed, Q. U., Redzwan, I. E., Saiman, M. Z., Supandi, F., Primaharinastiti, R., & El-Seedi, H. R. (2020b). Characterization of alpha-glucosidase inhibitors from Psychotria malayana Jack leaves extract using LC-MS-based multivariate data analysis and in silico molecular docking. Molecules, 25(24), 5885. https://doi.org/10.3390/molecules25245885 DOI: https://doi.org/10.3390/molecules25245885

Nipun, T. S., Khatib, A., Ibrahim, Z., Ahmed, Q. U., Redzwan, I. E., Primaharinastiti, R., Saiman, M. Z., Fairuza, R., Widyaningsih, T. D., AlAjmi, M. F., Khalifa, S. A. M., & El-Seedi, H. R. (2021b). GC-MS- and NMR-based metabolomics and molecular docking reveal the potential alpha-glucosidase inhibitors from Psychotria malayana Jack leaves. Pharmaceuticals, 14(10), 978. https://doi.org/10.3390/ph14100978 DOI: https://doi.org/10.3390/ph14100978

Nualkaew, S., Padee, P., & Talubmook, C. (2015). Hypoglycemic activity in diabetic rats of stigmasterol and sitosterol-3-O-D-glucopyranoside isolated from Pseuderanthemum palatiferum (Nees) Radlk. leaf extract. Journal of Medicinal Plants Research, 9, 629-635. http://dx.doi.org/10.5897/JMPR2014.5722 DOI: https://doi.org/10.5897/JMPR2014.5722

Ocampo, R., & Balick, M. J. (2009). Plants of semillas sagradas: An ethnomedicinal garden in Costa Rica. Revista Cubana de Plantas Medicinales, 14(3), 61-62.

Orji, O. U., Awoke, J. N., Harbor, C., Igwenyi, I. O., Obasi, O. D., Ezeani, N. N., & Aloke, C. (2020). Ethanol leaf extract of Psychotria microphylla rich in quercetin restores heavy metal induced redox imbalance in rats. Heliyon, 6(9), e04999. https://doi.org/10.1016/j.heliyon.2020.e04999 DOI: https://doi.org/10.1016/j.heliyon.2020.e04999

Orji, O. U., Ibiam, U. A., Aja, P. M., Uraku, A. J., Ezeani, N., & Alum, E. U. (2015b). Hepatotoxic effects of aqueous extract of Psychotria microphylla leaves on Clarias giriepinus Juveniles. IOSR Journal of Pharmacy and Biological Sciences, 10(4), 60–68. http://dx.doi.org/10.9790/3008-10456068

Pan, S. Y., Zhou, S. F., Gao, S. H., Yu, Z. L., Zhang, S. F., Tang, M. K., Sun, J. N., Ma, D. L., Han, Y. F., Fong, W. F., & Ko, K. M. (2014). New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine, 2013, 627375. https://doi.org/10.1155/2013/627375 DOI: https://doi.org/10.1155/2013/627375

Pecoits-Filho, R., Abensur, H., Betônico, C. C., Machado, A. D., Parente, E. B., Queiroz, M., Salles, J. E., Titan, S., & Vencio, S. (2016). Interactions between kidney disease and diabetes: dangerous liaisons. Diabetology & Metabolic Syndrome, 8, 50. https://doi.org/10.1186/s13098-016-0159-z DOI: https://doi.org/10.1186/s13098-016-0159-z

Plants of The World Online (2024). Psychotria malayana Jack. https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:762593-1

Poovitha, S., & Parani, M. (2016). In vitro and in vivo alpha-amylase and alpha-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complementary and Alternative Medicine, 16 (S1), 185. https://doi.org/10.1186/s12906-016-1085-1 DOI: https://doi.org/10.1186/s12906-016-1085-1

Rajendran, S. M., Sekar, K. C., & Sundaresan, V. (2002). Ethnomedicinal lore of Valaya tribals in Seithur Hills of Virudunagar district, Tamil Nadu, India. Indian Journal of Traditional Knowledge, 1(1), 59-71.

Ramu, R., Shirahatti, P. S., Zameer, F., Ranganatha, L. V., & Prasad, M. N. N. (2014). Inhibitory effect of banana (Musa sp. var. Nanjangud rasa bale) flower extract and its constituents Umbelliferone and Lupeol on alpha-glucosidase, aldose reductase and glycation at multiple stages. South African Journal of Botany, 95, 54-63. https://doi.org/10.1016/j.sajb.2014.08.001 DOI: https://doi.org/10.1016/j.sajb.2014.08.001

Rani, S. L., Devi, V. K., Soris, P. T., Maruthupandian, A., & Mohan, V. R. (2011). Ethnomedicinal plants used by Kanikkars of Agasthiarmalai biosphere reserve, Western Ghats. Journal of Ecobiotechnology, 3(7), 16–25.

Rao, P. V., Huey, L. L., Mohamed, S., Rahayu, I., Wahab, A., & Soon, J. M. (2016). Ethnomedicinal knowledge of Temiar Ethnic Tribe of Lojing Highlands, Kelantan: A source for nutritional and antioxidant potential. 5th World Conference on Applied Sciences, Engineering & Technology.

Rasoanaivo, P., Petitjean, A., Ratsimamanga-Urverg, S., & Rakoto-Ratsimamanga, A. (1992). Medicinal plants used to treat malaria in Madagascar. Journal of Ethnopharmacology, 37(2), 117–127. https://doi.org/10.1016/0378-8741(92)90070-8 DOI: https://doi.org/10.1016/0378-8741(92)90070-8

Robbrecht, E. (1988). Tropical woody Rubiaceae characteristic features and progressions contributions to a new subfamilial classification. Kew Bulletin, 1(3), 1-271. http://dx.doi.org/10.2307/4110534 DOI: https://doi.org/10.2307/4110534

Rosales-López, C., Muñoz-Arrieta, R., & Abdelnour-Esquivel, A. (2020). Emetine and cephaeline content in plants of Psychotria ipecacuanha in Costa Rica. Revista Colombiana de Química, 49(2), 18-22. https://doi.org/10.15446/rev.colomb.quim.v49n2.78347 DOI: https://doi.org/10.15446/rev.colomb.quim.v49n2.78347

Santos Junior, C. M., Silva, S. M. C., Sales, E. M., Velozo, E. D. S., Dos Santos, E. K. P., Canuto, G. A. B., Azeredo, F. J., Barros, T. F., & Biegelmeyer, R. (2023). Coumarins from Rutaceae: Chemical diversity and biological activities. Fitoterapia, 168, 105489. https://doi.org/10.1016/j.fitote.2023.105489 DOI: https://doi.org/10.1016/j.fitote.2023.105489

Schultes, R. E., & Hofmann, A. (1980). The botany and chemistry of hallucinogens. Alcohol and Alcoholism, 8(3), 122. https://doi.org/10.1093/oxfordjournals.alcalc.a046117 DOI: https://doi.org/10.1093/oxfordjournals.alcalc.a046117

Selvaraj, G., & Jeyasankar, D.A. (2018). Larvicidal properties of Psychotria octosulcata (W. A. Talbot.) (Rubiaceae) crude extracts on human vector mosquitoes Aedes aegypti (Linn.), Culex quinquefasciatus (Say.) and Anopheles stephensi Liston. Journal of Entomology and Zoology Studies, 6(1), 1190-1195.

Sharifi-Rad, J., Cruz-Martins, N., López-Jornet, P., Lopez, E. P., Harun, N., Yeskaliyeva, B., Beyatli, A., Sytar, O., Shaheen, S., Sharopov, F., Taheri, Y., Docea, A. O., Calina, D., & Cho, W. C. (2021). Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Medicine and Cellular Longevity, 2021, 6492346. https://doi.org/10.1155/2021/6492346 DOI: https://doi.org/10.1155/2021/6492346

Situmorang, R. O. P., Harianja, A. H., & Silalahi, J. (2015). Karo’s local wisdom: The use of woody plants for traditional diabetic medicines. Indonesian Journal of Forestry Research, 2(2), 121-131. https://doi.org/10.20886/ijfr.2015.2.2.121-130. DOI: https://doi.org/10.20886/ijfr.2015.2.2.121-130

Stefanachi, A., Leonetti, F., Pisani, L., Catto, M., & Carotti, A. (2018). Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 23(2), 250. http://dx.doi.org/10.3390/molecules23020250 DOI: https://doi.org/10.3390/molecules23020250

Subash-Babu, P., Abdulaziz AlSedairy, S., Abdulaziz Binobead, M., & Alshatwi, A. A. (2023). Luteolin-7-O-rutinoside protects RIN-5F cells from high-glucose-induced toxicity, improves glucose homeostasis in L6 myotubes, and prevents onset of type 2 diabetes. Metabolites, 13(2), 269. https://doi.org/10.3390/metabo13020269 DOI: https://doi.org/10.3390/metabo13020269

Sutha, S., Mohan, V. R., Kumaresan, S., Murugan, C., & Athiperumalsami, T. (2010). Ethnomedicinal plants used by the tribals of Kalakad-Mundanthurai tiger reserve (KMTR), Western Ghats, Tamil Nadu for the treatment of rheumatism. Indian Journal of Traditional Knowledge, 9(3), 502–509.

Syed Mohamad, S. N. A., Khatib, A., So'ad, S. Z. M., Ahmed, Q. U., Ibrahim, Z., Nipun, T. S., Humaryanto, H., AlAjmi, M. F., Khalifa, S. A. M., & El-Seedi, H. R. (2023). In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals, 16(12), 1692. https://doi.org/10.3390/ph16121692 DOI: https://doi.org/10.3390/ph16121692

Tabart, J., Kevers, C., Pincemail, J., Defraigne, J.-O., & Dommes, J. (2009). Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chemistry, 113(4), 1226–1233. https://doi.org/10.1016/j.foodchem.2008.08.013 DOI: https://doi.org/10.1016/j.foodchem.2008.08.013

Tannous, S., Stellbrinck, T., Hoter, A., & Naim, H. Y. (2023). Interaction between the alpha-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Frontiers In Molecular Biosciences, 10, 1160860. https://doi.org/10.3389/fmolb.2023.1160860 DOI: https://doi.org/10.3389/fmolb.2023.1160860

Xu, L., Zhao, X.-Y., Wu, Y.-L., & Zhang, W. (2015). The study on biological and pharmacological activity of coumarins. Proceedings of the 2015 Asia-Pacific Energy Equipment Engineering Research Conference. https://doi.org/10.2991/ap3er-15.2015.33 DOI: https://doi.org/10.2991/ap3er-15.2015.33

Yang, D., Wang, T., Long, M., & Li, P. (2020). Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020, 8825387. https://doi.org/10.1155/2020/8825387 DOI: https://doi.org/10.1155/2020/8825387

Yang, H., Zhang, H., Yang, C., & Chen, Y. (2016). Chemical constituents of plants from the genus Psychotria. Chemistry and Biodiversity, 13(7), 807–820. https://doi.org/10.1002/cbdv.201500259 DOI: https://doi.org/10.1002/cbdv.201500259

Zhou, B. D., Zhang, X. L., Niu, H. Y., Guan, C. Y., Liu, Y. P., & Fu, Y. H. (2018). Chemical constituents from stems and leaves of Psychotria serpens. China Journal of Chinese Materia Medica, 43(24), 4878–4883. https://doi.org/10.19540/j.cnki.cjcmm.20180912.003