Study on the Binding Interaction of Three-finger Toxins From Cobras And Mangrove Catsnake Toward Nicotinic Acetylcholine Receptors: A Computational Approach

Authors

  • Nor Asyikin Zukifli Department of Basic Medical Sciences
  • Muhamad Rusdi Ahmad Rusmili Department of Basic Medical Sciences
  • Iekhsan Othman Jeffrey Cheah School of Medicine and Health Sciences
  • Ahmad Khaldun Ismail Department of Emergency Medicine
  • Janeyuth Chaisakul Department of Pharmacology
  • Zalikha Ibrahim Department of Pharmaceutical Chemistry

DOI:

https://doi.org/10.31436/jop.v2i2.171

Keywords:

Naja sumatrana, Naja kaouthia, Boiga dendrophila, binding affinity, nicotinic acetylcholine receptor, molecular docking

Abstract

Introduction: Snake venom is a combination of various proteins and peptides that cause diverse biological effects on multiple organ systems. In elapid venom, three-finger toxins are the most abundant type of toxin. Although toxins share similarities in their structure, they are known for their capability to cause a myriad of toxic actions such as neurotoxicity, cardiotoxicity, and cytotoxicity. Unfortunately, many of these toxins are not fully characterized especially on their binding affinity and selectivity towards receptors and their effect to the organ system.

Materials and method: Therefore, this work was conducted to compare the binding properties of selected three-finger toxins (3FTxs) from cobras (Naja sumatrana and Naja kaouthia) and mangrove catsnake (Boiga dendrophila) towards human and bird nicotinic acetylcholine receptors (?3?2, ?4?2, ?7) using computational approaches.

Results: The results show that all toxins bind to the orthosteric site, which is located outside the extracellular domain of ? subunit for all receptors in both species. Interaction between receptors and toxins occurs by the formation of hydrogen bond, ionic bond, and hydrophobic contact with important residues involved in their binding pocket.

Conclusion: Based on the data, the toxins showed different binding affinities towards nicotinic acetylcholine receptors in different species. Differences in the binding affinity towards different species could have a significant impact on the functional characterization of venom caused by these toxins and toxins with nearly similar sequences.

References

Al-Refaei, M. A., Makki, R. M., & Ali, H. M. (2020). Structure prediction of transferrin receptor protein 1 (TfR1) by homology modelling, docking, and molecular dynamics simulation studies. Heliyon, 6(1), e03221. https://doi.org/10.1016/j.heliyon.2020.e03221

Bailly-Chouriberry, L., Cormant, F., Garcia, P., Kind, A., Popot, M.-A. s., & Bonnaire, Y. (2013). Identification of ?-cobratoxin in equine plasma by LC-MS/MS for doping control. Analytical chemistry, 85(10), 5219-5225. https://doi.org/10.1021/ac4006342

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., . . . Bordoli, L. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, 42(W1), W252-W258. https://doi.org/10.1093/nar/gku340

Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository—new features and functionality. Nucleic acids research, 45(D1), D313-D319. https://doi.org/10.1093/nar/gkw1132

Blanchet, G. (2017). Evolutionary Framework to Study Animal Venom Evolution. [Unpublished manuscript]. Department of Biological Sciences, National University of Singapore

Bosshard, H. R., Marti, D. N., & Jelesarov, I. (2004). Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition, 17(1), 1-16. https://doi.org/10.1002/jmr.657

Chakravarty, D., Guharoy, M., Robert, C. H., Chakrabarti, P., & Janin, J. (2013). Reassessing buried surface areas in protein–protein complexes. Protein Science, 22(10), 1453-1457. https://doi.org/10.1002/pro.2330

Changeux, J.-P. (2018). The nicotinic acetylcholine receptor: a typical ‘allosteric machine’. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1749), 20170174. https://doi.org/10.1098/rstb.2017.0174

Chen, J., Sawyer, N., & Regan, L. (2013). Protein–protein interactions: General trends in the relationship between binding affinity and interfacial buried surface area. Protein Science, 22(4), 510-515. https://doi.org/10.1002/pro.2230

de la Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X., López-Vera, E., & Corzo, G. (2018). Short-chain consensus alpha-neurotoxin: A synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids, 50(7), 885-895. https://doi.org/10.1007/s00726-018-2556-0

de la Rosa, G., Pastor, N., Alagón, A., & Corzo, G. (2017). Synthetic peptide antigens derived from long-chain alpha-neurotoxins: Immunogenicity effect against elapid venoms. Peptides, 88, 80-86. https://doi.org/10.1016/j.peptides.2016.12.006

Deba, F., Ali, H. I., Tairu, A., Ramos, K., Ali, J., & Hamouda, A. K. (2018). LY2087101 and dFBr share transmembrane binding sites in the (?4) 3 (?2) 2 nicotinic acetylcholine receptor. Scientific reports, 8(1), 1-18. https://doi.org/10.1016/j.peptides.2016.12.006

Donald, J. E., Kulp, D. W., & DeGrado, W. F. (2011). Salt bridges: geometrically specific, designable interactions. Proteins: Structure, Function, and Bioinformatics, 79(3), 898-915. https://doi.org/10.1002/prot.22927

Ebrahim, K., Shirazi, F. H., Mirakabadi, A. Z., & Vatanpour, H. (2015). Cobra venom cytotoxins; apoptotic or necrotic agents? Toxicon, 108, 134-140. https://doi.org/10.1016/j.toxicon.2015.09.017

Girish, V. M., Kumar, S., Joseph, L., Jobichen, C., Kini, R. M., & Sivaraman, J. (2012). Identification and structural characterization of a new three-finger toxin hemachatoxin from Hemachatus haemachatus venom. PloS one, 7(10), e48112. https://doi.org/10.1371/journal.pone.0048112

Gong, S., Liang, Q., Zhu, Q., Ding, D., Yin, Q., Tao, J., & Jiang, X. (2015). Nicotinic acetylcholine receptor ?7 subunit is involved in the cobratoxin-induced antinociception in an animal model of neuropathic pain. Toxicon, 93, 31-36. https://doi.org/10.1016/j.toxicon.2014.11.222

Guo, Q., Jiang, Y.-J., Jin, H., Jiang, X.-H., Gu, B., Zhang, Y.-M., . . . Tao, J. (2013). Modulation of A-type K+ channels by the short-chain cobrotoxin through the protein kinase C-delta isoform decreases membrane excitability in dorsal root ganglion neurons. Biochemical pharmacology, 85(9), 1352-1362. https://doi.org/10.1016/j.bcp.2013.02.019

Gvritishvili, A. G., Gribenko, A. V., & Makhatadze, G. I. (2008). Cooperativity of complex salt bridges. Protein Science, 17(7), 1285-1290. https://doi.org/10.1110/ps.034975.108

Heyborne, W. H., & Mackessy, S. P. (2013). Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae). Biochimie, 95(10), 1923-1932. https://doi.org/10.1016/j.biochi.2013.06.025

Ismail, A. K. (2015). Snakebite and envenomation management in Malaysia. Clin Toxicol Asia Pac Africa, 2, 71-102. https://doi.org/10.1007/978-94-007-6386-9_54

Kalam, Y., Isbister, G. K., Mirtschin, P., Hodgson, W. C., & Konstantakopoulos, N. (2011). Validation of a cell-based assay to differentiate between the cytotoxic effects of elapid snake venoms. Journal of pharmacological and toxicological methods, 63(2), 137-142. https://doi.org/10.1016/j.vascn.2010.09.001

Kalamida, D., Poulas, K., Avramopoulou, V., Fostieri, E., Lagoumintzis, G., Lazaridis, K., . . . Tzartos, S. J. (2007). Muscle and neuronal nicotinic acetylcholine receptors. The FEBS journal, 274(15), 3799-3845. https://doi.org/10.1111/j.1742-4658.2007.05935.x

Kini, R. M., & Doley, R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon, 56(6), 855-867. https://doi.org/10.1016/j.toxicon.2010.07.010

Kini, R. M., & Koh, C. Y. (2016). Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: Definition and nomenclature of interaction sites. Toxins, 8(10), 284. https://doi.org/10.3390/toxins8100284

Kumar, R. B., Suresh, M. X., & Priya, B. S. (2015). Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha-delta bungarotoxin-4 inhibitors discovery. Pharmacognosy magazine, 11(Suppl 1), S19. https://doi.org/10.4103/0973-1296.157670

Lagoumintzis, G., Chasapis, C. T., Alexandris, N., Kouretas, D., Tzartos, S., Eliopoulos, E., . . . Poulas, K. (2021). Nicotinic cholinergic system and COVID-19: In silico identification of interactions between ?7 nicotinic acetylcholine receptor and the cryptic epitopes of SARS-Co-V and SARS-CoV-2 Spike glycoproteins. Food and Chemical Toxicology, 149, 112009. https://doi.org/10.1016/j.fct.2021.112009

Laha, K. T., & Wagner, D. A. (2011). A state-dependent salt-bridge interaction exists across the ?/? intersubunit interface of the GABAA receptor. Molecular pharmacology, 79(4), 662-671. https://doi.org/10.1124/mol.110.068619

Lim, S. V., Rahman, M. B. A., & Tejo, B. A. (2011). Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC bioinformatics, 12, S24 (2011). https://doi.org/10.1186/1471-2105-12-S13-S24

Luttmann, E., Ludwig, J., Höffle?Maas, A., Samochocki, M., Maelicke, A., & Fels, G. (2009). Structural model for the binding sites of allosterically potentiating ligands on nicotinic acetylcholine receptors. ChemMedChem: Chemistry Enabling Drug Discovery, 4(11), 1874-1882. https://doi.org/10.1002/cmdc.200900320

Marotta, C. B., Lester, H. A., & Dougherty, D. A. (2015). An unaltered orthosteric site and a network of long-range allosteric interactions for PNU-120596 in ?7 nicotinic acetylcholine receptors. Chemistry & biology, 22(8), 1063-1073. https://doi.org/10.1016/j.chembiol.2015.06.018

Meng, Q.-X., Wang, W.-Y., Lu, Q.-M., Jin, Y., Wei, J.-F., Zhu, S.-W., & Xiong, Y.-L. (2002). A novel short neurotoxin, cobrotoxin c, from monocellate cobra (Naja kaouthia) venom: isolation and purification, primary and secondary structure determination, and tertiary structure modeling. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 132(1), 113-121. https://doi.org/10.1016/S1532-0456(02)00049-2

Millar, N. S., & Denholm, I. (2007). Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invertebrate Neuroscience, 7(1), 53-66. https://doi.org/10.1007/s10158-006-0040-0

Mohamed, T. S., Jayakar, S. S., & Hamouda, A. K. (2015). Orthosteric and allosteric ligands of nicotinic acetylcholine receptors for smoking cessation. Frontiers in molecular neuroscience, 8, 71. https://doi.org/10.3389/fnmol.2015.00071

Murgueitio, M. S., Bermudez, M., Mortier, J., & Wolber, G. (2012). In silico virtual screening approaches for anti-viral drug discovery. Drug Discovery Today: Technologies, 9(3), e219-e225. https://doi.org/10.1016/j.ddtec.2012.07.009

Nayek, A., Gupta, P. S. S., Banerjee, S., Mondal, B., & Bandyopadhyay, A. K. (2014). Salt-bridge energetics in halophilic proteins. PloS one, 9(4), e93862. https://doi.org/10.1371/journal.pone.0093862

Pandya, A., & Yakel, J. L. (2011). Allosteric modulators of the ?4?2 subtype of neuronal nicotinic acetylcholine receptors. Biochemical pharmacology, 82(8), 952-958. https://doi.org/10.1016/j.bcp.2011.04.020

Pavlovicz, R. E., Henderson, B. J., Bonnell, A. B., Boyd, R. T., McKay, D. B., & Li, C. (2011). Identification of a negative allosteric site on human ?4?2 and ?3?4 neuronal nicotinic acetylcholine receptors. PloS one, 6(9), e24949. https://doi.org/10.1371/journal.pone.0024949

Pawlak, J., & Kini, R. M. (2008). Unique gene organization of colubrid three-finger toxins: complete cDNA and gene sequences of denmotoxin, a bird-specific toxin from colubrid snake Boiga dendrophila (Mangrove Catsnake). Biochimie, 90(6), 868-877. https://doi.org/10.1016/j.biochi.2008.02.016

Pawlak, J., Mackessy, S. P., Fry, B. G., Bhatia, M., Mourier, G., Fruchart-Gaillard, C., . . . Ménez, A. (2006). Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. Journal of Biological Chemistry, 281(39), 29030-29041. https://doi.org/10.1074/jbc.M605850200

Pawlak, J., Mackessy, S. P., Sixberry, N. M., Stura, E. A., Le Du, M. H., Ménez, R., . . . Kini, R. M. (2009). Irditoxin, a novel covalently linked heterodimeric three?finger toxin with high taxon?specific neurotoxicity. The FASEB Journal, 23(2), 534-545. https://doi.org/10.1096/fj.08-113555

Rashin, A. A. (1984). Buried surface area, conformational entropy, and protein stability. Biopolymers: Original Research on Biomolecules, 23(8), 1605-1620. https://doi.org/10.1002/bip.360230813

Roly, Z. Y., Islam, M. M., & Reza, M. A. (2014). A comparative in silico characterization of functional and physicochemical properties of 3FTx (three finger toxin) proteins from four venomous snakes. Bioinformation, 10(5), 281. https://doi.org/10.6026/97320630010281.

Rusmili, M. R. A., Yee, T. T., Mustafa, M. R., Othman, I., & Hodgson, W. C. (2014). In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand. Toxins, 6(3), 1036-1048. https://doi.org/10.3390/toxins6031036

Saviola, A. J., Peichoto, M. E., & Mackessy, S. P. (2014). Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads. Toxin Reviews, 33(4), 185-201. https://doi.org/10.3109/15569543.2014.942040

Shi, G.-n., Liu, Y.-l., Lin, H.-m., Yang, S.-l., Feng, Y.-l., Reid, P. F., & Qin, Z.-h. (2011). Involvement of cholinergic system in suppression of formalin-induced inflammatory pain by cobratoxin. Acta Pharmacologica Sinica, 32(10), 1233-1238. https://doi.org/10.1038/aps.2011.65

Shulepko, M., Lyukmanova, E., Shenkarev, Z., Dubovskii, P., Astapova, M., Feofanov, A., . . . Dolgikh, D. (2017). Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana. Protein expression and purification, 130, 13-20. https://doi.org/10.1016/j.pep.2016.09.021

Silva, A., Cristofori-Armstrong, B., Rash, L. D., Hodgson, W. C., & Isbister, G. K. (2018). Defining the role of post-synaptic ?-neurotoxins in paralysis due to snake envenoming in humans. Cellular and molecular life sciences, 75(23), 4465-4478. https://doi.org/10.3390/toxins9040143

Spurny, R., Debaveye, S., Farinha, A., Veys, K., Vos, A. M., Gossas, T., . . . Danielson, U. H. (2015). Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the ?7 nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences, 112(19), E2543-E2552. https://doi.org/10.1073/pnas.141828911

Tan, K. Y., Tan, C. H., Chanhome, L., & Tan, N. H. (2017). Comparative venom gland transcriptomics of Naja kaouthia (monocled cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ, 5, e3142. https://doi.org/10.7717/peerj.3142

Tan, K. Y., Tan, C. H., Fung, S. Y., & Tan, N. H. (2015). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. Journal of proteomics, 120, 105-125. https://doi.org/10.1016/j.jprot.2015.02.012

Tan, K. Y., Tan, C. H., Sim, S. M., Fung, S. Y., & Tan, N. H. (2016). Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): venom-induced neuromuscular depression and antivenom neutralization. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 185, 77-86. https://doi.org/10.1016/j.cbpc.2016.03.005

Tasoulis, T., & Isbister, G. K. (2017). A review and database of snake venom proteomes. Toxins, 9(9), 290. https://doi.org/10.3390/toxins9090290

Teo, C. Y., Shave, S., Chor, A. L. T., Salleh, A. B., Rahman, M. B. B. A., Walkinshaw, M. D., & Tejo, B. A. (2012). Discovery of a new class of inhibitors for the protein arginine deiminase type 4 (PAD4) by structure-based virtual screening. BMC bioinformatics, 13, S4. https://doi.org/10.1186/1471-2105-13-S17-S4

Teoh, S. Q., & Yap, M. K. K. (2020). Naja sumatrana venom cytotoxin, suma CTX exhibits concentration-dependent cytotoxicity via caspase-activated mitochondrial-mediated apoptosis without transitioning to necrosis. Toxin Reviews, 1-15. https://doi.org/10.1080/15569543.2020.1799408

Torres-Bonilla, K. A., Schezaro-Ramos, R., Floriano, R. S., Rodrigues-Simioni, L., Bernal-Bautista, M. H., & da Cruz-Höfling, M. A. (2016). Biological activities of Leptodeira annulata (banded cat-eyed snake) venom on vertebrate neuromuscular preparations. Toxicon, 119, 345-351. https://doi.org/10.1016/j.toxicon.2016.07.004

Utkin, Y. N. (2013). Three-finger toxins, a deadly weapon of elapid venom–milestones of discovery. Toxicon, 62, 50-55. https://doi.org/10.1016/j.toxicon.2012.09.007

Utkin, Y. N., Cherepakhin, I. Yu., Kryukova, E. V., Shelukhina, I. V., Makarova, Y. V., Kasheverov, I. E., Mukherjee, A. K., Gusev, A. A., & Kuznetsov, D. V. (2017). Conjugates of ?-Cobratoxin with CdSe Quantum Dots: Preparation and Biological Activity. In Nano Hybrids and Composites (Vol. 13, pp. 3–8). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/nhc.13.3

Walsh, R. M., Roh, S.-H., Gharpure, A., Morales-Perez, C. L., Teng, J., & Hibbs, R. E. (2018). Structural principles of distinct assemblies of the human ?4?2 nicotinic receptor. Nature, 557(7704), 261-265. https://doi.org/10.1038/s41586-018-0081-7

Wang, H., Li, X., Zhangsun, D., Yu, G., Su, R., & Luo, S. (2019). The ?9?10 nicotinic acetylcholine receptor antagonist ?O-conotoxin GeXIVA [1, 2] alleviates and reverses chemotherapy-induced neuropathic pain. Marine drugs, 17(5), 265. https://doi.org/10.3390/md17050265

Wang, J., & Lindstrom, J. (2018). Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. British journal of pharmacology, 175(11), 1805-1821. https://doi.org/10.1111/bph.13745

Weinstein, S. A., White, J., Keyler, D. E., & Warrell, D. A. (2013). Non-front-fanged colubroid snakes: a current evidence-based analysis of medical significance. Toxicon, 69, 103-113. https://doi.org/10.1016/j.toxicon.2013.02.003

Yang, Y., Yu, Y., Cheng, J., Liu, Y., Liu, D.-S., Wang, J., . . . Xu, T.-L. (2012). Highly conserved salt bridge stabilizes rigid signal patch at extracellular loop critical for surface expression of acid-sensing ion channels. Journal of Biological Chemistry, 287(18), 14443-14455. https://doi.org/10.1074/jbc.M111.334250

Yap, M., Tan, N., & Fung, S. Y. (2011). Biochemical and toxinological characterization of Naja sumatrana (Equatorial spitting cobra) venom. Journal of venomous animals and toxins including tropical diseases, 17(4), 451-459. https://doi.org/10.1590/S1678-91992011000400012

Yap, M. K. K., Tan, N. H., Sim, S. M., Fung, S. Y., & Tan, C. H. (2014). Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis, 8(6), e2890. https://doi.org/10.1371/journal.pntd.0002890

Zhang, L., Zhang, Y., Jiang, D., Reid, P. F., Jiang, X., Qin, Z., & Tao, J. (2012). Alpha-cobratoxin inhibits T-type calcium currents through muscarinic M4 receptor and Go-protein ?? subunits-dependent protein kinase A pathway in dorsal root ganglion neurons. Neuropharmacology, 62(2), 1062-1072. https://doi.org/10.1016/j.neuropharm.2011.10.017

Downloads

Published

2022-07-31

How to Cite

Zukifli , N. A., Ahmad Rusmili, M. R., Othman, I., Ismail, A. K., Chaisakul, J., & Ibrahim, Z. (2022). Study on the Binding Interaction of Three-finger Toxins From Cobras And Mangrove Catsnake Toward Nicotinic Acetylcholine Receptors: A Computational Approach. Journal of Pharmacy, 2(2), 122–140. https://doi.org/10.31436/jop.v2i2.171

Issue

Section

Original Articles