A Phytochemical Profiling and in vitro Antimicrobial Evaluation of Methanolic Extract and Fractions of Dicranopteris linearis Leaves

Main Article Content

Gregorius Richard Clay Rudyson
Siti Zaiton So'ad
Elok Zubaidah
Shamsul Khamis

Abstract

Introduction: Dicranopteris linearis, locally known as resam, has been recognized for its potential health benefits, primarily due to its rich phytochemical content. Traditionally used for medicinal purposes, the leaves are known to possess antioxidant and antimicrobial properties. This study aimed to screen the phytochemical composition and evaluate the antimicrobial activity of the methanolic extract of D. linearis leaves, with potential applications in the medicinal industry. Materials and Methods: The dried and ground leaves of D. linearis were macerated in 100% methanol to extract the phytochemicals. The extract was subjected to qualitative phytochemical profiling. Total Phenolic Content (TPC) was determined by the Folin-Ciocalteu method and Total Flavonoid Content (TFC) was measured using the AlCl? method. The methanol extract was fractionated by Vacuum Liquid Chromatography (VLC) with ethyl acetate (100%), ethyl acetate: methanol (5:5) and methanol (100%).  Antimicrobial activity of the crude extract and fractions was assessed against Escherichia coli and Staphylococcus aureus using the disc diffusion assay and broth microdilution techniques. Results: Phytochemical profiling of the methanol extract revealed the presence of phenolic compounds, flavonoids, tannins, and saponins. The TPC and TFC assays showed that the methanolic extract contained 225.43 ± 4.16 mg GAE/g of phenolic compounds and 50.20 ± 4.78 mg QE/g of flavonoids. Fractionation of methanol extract was afforded three fractions, F1, F2 and F3. Antimicrobial testing demonstrated that the extract exhibited stronger activity against S. aureus (MIC = 1.563 mg/mL) compared to E. coli (MIC > 50 mg/mL). For the fraction, F1 exhibited both microbes with promising activity. Conclusions: The methanolic extract from D. linearis leaves contain bioactive phytochemicals with significant antioxidant and antimicrobial properties. These findings suggest that D. linearis may serve as a valuable source for the development of natural antimicrobial agents in the pharmaceutical industry.

Article Details

How to Cite
Clay Rudyson, G. R., So’ad, S. Z., Zubaidah, E. ., & Khamis, S. . (2025). A Phytochemical Profiling and in vitro Antimicrobial Evaluation of Methanolic Extract and Fractions of Dicranopteris linearis Leaves. Journal of Pharmacy, 5(2), 305–315. https://doi.org/10.31436/jop.v5i2.402
Section
Original Articles

References

Aboshoufa, N. M., & Elgubbi, H. (2019). Antioxidant Studies and Phytochemical Screening of the Medicinal Fern Dicranopteris linearis Extracts. EC Nutrition, 14(10), 870–879.

Abubakar, A. R., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1. https://doi.org/10.4103/JPBS.JPBS_175_19 DOI: https://doi.org/10.4103/jpbs.JPBS_175_19

Azwanida, N. (2015). A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. Undefined, 4(3), 1-3. https://doi.org/10.4172/2167-0412.1000196 DOI: https://doi.org/10.4172/2167-0412.1000196

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/J.JPHA.2015.11.005 DOI: https://doi.org/10.1016/j.jpha.2015.11.005

Behbahani,A., Noshad, B.M., & Falah, F. (2019). Cumin essential oil: Phytochemical analysis, antimicrobial activity and investigation of its mechanism of action through scanning electron microscopy. Microbial Pathogenesis, 136, 103716. https://doi.org/10.1016/j.micpath.2019.1037 DOI: https://doi.org/10.1016/j.micpath.2019.103716

Bessa, L. J., Fazii, P., Di Giulio, M., & Cellini, L. (2015). Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: Some remarks about wound infection. International Wound Journal, 12(1), 47–52. https://doi.org/10.1111/IWJ.12049 DOI: https://doi.org/10.1111/iwj.12049

Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Bordes, C. (2019). Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Frontiers in Microbiology, 10(APR), 829. https://doi.org/10.3389/FMICB.2019.00829/BI BTEX DOI: https://doi.org/10.3389/fmicb.2019.00829

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules (Basel, Switzerland), 25(6), 2-4. https://doi.org/10.3390/molecules25061340 DOI: https://doi.org/10.3390/molecules25061340

Dong, S., Yang, X., Zhao, L., Zhang, F., Hou, Z., & Xue, P. (2020). Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Industrial Crops and Products, 149, 112350. https://doi.org/10.1016/j.indcrop.2020.112350 DOI: https://doi.org/10.1016/j.indcrop.2020.112350

Farooq, S., Mir, S. A., Shah, M. A., & Manickavasafan, A. (2022). Chapter 2: Extraction Techniques in Plant Extracts: Applications in the Food Industry (S. A. Mir, M. A. Shah, & A. Manickavasafan, eds.). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-822475-5.00005-3

Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 4-6. https://doi.org/10.1016/j.foodchem.2021.1319 18 DOI: https://doi.org/10.1016/j.foodchem.2021.131918

Ismail, N. A., Shamsahal-Din, N. S., Mamat, S. S., Zabidi, Z., Wan Zainulddin, W., Kamisan, F. H., Zakaria, Z. A. (2014). Effect of aqueous extract of Dicranopteris linearis leaves against paracetamol and carbon tetrachloride-induced liver toxicity in rats. Pak J Pharm Sci., 27(4), 831–835. https://pubmed.ncbi.nlm.nih.gov/25015448/

Kamisan, F. H., Yahya, F., Mamat, S. S., Kamarolzaman, M. F. F., Mohtarrudin, N., Kek, T. L., Zakaria, Z. A. (2014). Effect of methanol extract of Dicranopteris linearis against carbon tetrachloride-induced acute liver injury in rats. BMC Complementary and Alternative Medicine, 14. https://doi.org/10.1186/1472-6882-14-123 DOI: https://doi.org/10.1186/1472-6882-14-123

Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/162750 DOI: https://doi.org/10.1155/2013/162750

Lai, C., Ponnusamy, Y., Lim, G., & Ramanathan, S. (2021). Antibacterial, antibiofilm and antibiotic-potentiating effects of a polyphenol-rich fraction of Dicranopteris linearis (Burm.f.) Underw. Journal of Herbal Medicine, 25, 100419. https://doi.org/10.1016/j.hermed.2020.100419 DOI: https://doi.org/10.1016/j.hermed.2020.100419

Loree, J., & Lappin, S. L. (2023, August 14). Bacteriostatic antibiotics. StatPearls – NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK547678/

María, R., Shirley, M., Xavier, C., Jaime, S., David, V., Rosa, S., & Jodie, D. (2018). Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. Journal of King Saud University Science, 30(4), 500–505. https://doi.org/10.1016/J.JKSUS.2017.03.009 DOI: https://doi.org/10.1016/j.jksus.2017.03.009

Molino, S., Casanova, N. A., Rufián Henares, J. Á., & Fernandez Miyakawa, M. E. (2020). Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. Journal of Agricultural and Food Chemistry,68(10),2836–2848. https://doi.org/10.1021/ACS.JAFC.9B00590 DOI: https://doi.org/10.1021/acs.jafc.9b00590

Pant, D. R., Pant, N. D., Saru, D. B., Yadav, U. N., & Khanal, D. P. (2017). Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. Journal of Intercultural Ethnopharmacology, 6(2),170–176. https://doi.org/10.5455/JICE.20170403094055 DOI: https://doi.org/10.5455/jice.20170403094055

Rajesh, K. D., Vasantha, S., Panneerselvam, A., Rajesh, N. V., & Jeyathilakan, N. (2016). Phytochemical analysis, in vitro antioxidant potential and gas chromatography-mass spectrometry studies of Dicranopteris linearis. Asian Journal of Pharmaceutical and Clinical Research, 9, 220–225. https://doi.org/10.22159/AJPCR.2016.V9S2.13 636 DOI: https://doi.org/10.22159/ajpcr.2016.v9s2.13636

Rasheed, N. A., & Hussein, N. R. (2021). Staphylococcus aureus: An Overview of Discovery, Characteristics, Epidemiology, Virulence Factors and Antimicrobial Sensitivity Short Title: Methicillin Resistant Staphylococcus aureus: An overview. European Journal of Molecular & Clinical Medicine, 08(03), 1160–1183.

Rasul, M. G. (2018). Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. International Journal of Basic Sciences and Applied Computing, 2(6), 10-11.

Roghini, R., & Vijayalakshmi, K. (2018). Phytochemical Screening, Quantitative Analysis of Flavonoids and Minerals in Ethanolic Extract of Citrus paradisi. International Journal of Pharmaceutical Sciences & Research, 9(11), 4859–4864. https://ijpsr.com/bft-article

Romadhon, Z. (2016). Identifikasi bakteri Escherichia coli dan Salmonella sp. pada siomay yang dijual di kantin SD Negeri di kelurahan Pisangan, Cirendeu, dan Cempaka Putih (FKIK UIN Jakarta). FKIK UIN Jakarta. Retrieved from https://repository.uinjkt.ac.id/dspace/handle/123456789/33559

Salem, K. S., Rashid, T. U., Minhajul Islam, M., Nuruzzaman Khan, M., Sharmeen, S., Mizanur Rahman, M., & Haque, P. (2016). New and Future Developments in Microbial Biotechnology and Bioengineering. In V. Gupta (Ed.), New and Future Developments in Microbial Biotechnology and Bioengineering. Oxford: Elsevier B.V. Retrieved from http://dx.doi.org/10.1016/B978-0-444-63507-5/00011-3

Saswade, R. R. (2019). Qualitatively Preliminary Phytochemical Analysis of Some Different Weed Species. International Journal of Research and Analytical Reviews, 6(2), 704-706. http://ijrar.com/

Senhaji, S., Lamchouri, F., & Toufik, H. (2020). Phytochemical Content, Antibacterial and Antioxidant Potential of Endemic Plant Anabasis aretioïdes Coss. & Moq. (Chenopodiaceae). BioMed Research International, 2020. https://doi.org/10.1155/2020/6152932 DOI: https://doi.org/10.1155/2020/6152932

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608. https://doi.org/10.22271/CHEMI.2020.V8.I2I.8834 DOI: https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Veiga, A., Toledo, M. da G. T., Rossa, L. S., Mengarda, M., Stofella, N. C. F., Oliveira, L. J., Murakami, F. S. (2019). Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. Journal of Microbiological Methods, 162,50–61. DOI: https://doi.org/10.1016/j.mimet.2019.05.003