Solid-State Modification Strategies for Alpha-Mangostin Solubility Enhancement: A Review on Recent Progress

Main Article Content

Nurin Syamimi Ahmad Izuren Shah
Muhammad Taher Bakhtiar
Syarifah Abd Rahim
Fatmawati Adam
Wan Hazman Danial
Mohd Rushdi Abu Bakar

Abstract

Introduction: Enhancing the therapeutic efficacy of active pharmaceutical ingredients requires addressing the persistent challenge of improving their solubility. Alpha-mangostin (AM), a promising natural compound with various pharmacological properties, faces significant limitations due to its low aqueous solubility. This review focuses on evaluating solid-state modification (SSM) techniques developed to enhance AM solubility. It aims to identify the most effective SSM approaches, analyse their advantages, and provide insights for future research directions in addressing solubility challenges for poorly water-soluble compounds. Methods: This review article is based on a comprehensive analysis of the literature from databases like Scopus, Google Scholar, ScienceDirect, Springer, and PubChem, covering studies published in the past 15 years. Keywords such as "solubility," "alpha-mangostin," and "solubility improvement" were utilised, with a focus on scientific articles and reviews. Results: Several strategies, such as nanoparticle technology, particle size reduction, amorphous formation, and solid dispersion, have been used to enhance AM solubility. Solid dispersion with polyvinylpyrrolidone achieved the highest solubility (2743 ?g/mL), while the AM-chitosan-oleic acid complex using nanotechnology improved AM solubility to 160 ?g/mL, an 800-fold increase from 0.2 ?g/mL. Conclusion: The reviewed methods have significantly enhanced the aqueous solubility of AM, with solid dispersion and nanotechnology showing the most promising results. These findings highlight the potential of solubility enhancement strategies to optimise AM’s pharmaceutical applications and provide a framework for improving the bioavailability of other poorly water-soluble compounds. Future research should explore alternative methods, such as co-crystallisation and advanced nanotechnologies, to further enhance solubility and formulation efficiency.




Article Details

How to Cite
Ahmad Izuren Shah, N. S. ., Bakhtiar, M. T., Abd Rahim, S. ., Adam, F. ., Danial, W. H. ., & Abu Bakar, . M. R. (2025). Solid-State Modification Strategies for Alpha-Mangostin Solubility Enhancement: A Review on Recent Progress. Journal of Pharmacy, 5(1), 170–185. https://doi.org/10.31436/jop.v5i1.352
Section
Review Articles

References

Aisha, A. F. A., Ismail, Z., Abu-Salah, K. M., & Majid, A. M. (2012). Solid dispersions of ?-mangostin improve its aqueous solubility through self-assembly of nanomicelles. Journal of Pharmaceutical Sciences, 101(2), 815–825. https://doi.org/10.1002/jps.22806 DOI: https://doi.org/10.1002/jps.22806

Ahmad Izuren Shah, N. S., Abu Bakar, M. R., Taher, M., Danial, W. H., Adam, F., & Abdul Rahim, S. (2025). Occurrence analysis of alpha-mangostin from different organs of Garcinia mangostana L. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2024.2449493 DOI: https://doi.org/10.1080/14786419.2024.2449493

Ahmad M., Yamin B. M., Mat Lazim A. (2013). A study on dispersion and characterisation of ?-mangostin loaded pH sensitive microgel systems. Chemistry central journal, 7(1):85. DOI: https://doi.org/10.1186/1752-153X-7-85

Akhmad Husen, S., Khaleyla, F., Nur Muhammad Ansori, A., Kuncoroningrat Susilo, R. J., & Winarni, D. (2018). Antioxidant activity assay of alpha-Mangostin for amelioration of kidney structure and function in diabetic mice. Atlantis Press, 84–88. DOI: https://doi.org/10.2991/icpsuas-17.2018.20

Alpha mangostin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5281650. [Last accessed on 25 Jan 2025]

Alshora, D. H., Ibrahim, M. A., & Alanazi, F. K. (2016). Nanotechnology from particle size reduction to enhancing aqueous solubility. In Surface Chemistry of Nanobiomaterials, 163–191. https://doi.org/10.1016/b978-0-323-42861-3.00006-6 DOI: https://doi.org/10.1016/B978-0-323-42861-3.00006-6

Ardakanian, A., Rahbardar, M. G., Omidkhoda, F., Razavi, B. M., & Hosseinzadeh, H. (2022). Effect of alpha-mangostin on olanzapine-induced metabolic disorders in rats. Iranian Journal of Basic Medical Sciences, 25(2), 198.

Asasutjarit, R., Meesomboon, T., Adulheem, P., Kittiwisut, S., Sookdee, P., Samosornsuk, W., & Fuongfuchat, A. (2019). Physicochemical properties of alpha-mangostin loaded nanoemulsions prepared by ultrasonication technique. Heliyon, 5(9), e02465. https://doi.org/10.1016/j.heliyon.2019.e02465 DOI: https://doi.org/10.1016/j.heliyon.2019.e02465

Babu, N. J., & Nangia, A. (2011). Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design, 11(7), 2662–2679. https://doi.org/10.1021/cg200492w DOI: https://doi.org/10.1021/cg200492w

Budiman, A., Nurani, N. V., Laelasari, E., Muchtaridi, M., Sriwidodo, S., & Aulifa, D. L. (2023). Effect of drug–polymer interaction in amorphous solid dispersion on the physical stability and dissolution of drugs: The case of alpha-mangostin. Polymers, 15(14), 3034. https://doi.org/10.3390/polym15143034 DOI: https://doi.org/10.3390/polym15143034

Chaudhari, S. P., & Dugar, R. P. (2017). Application of surfactants in solid dispersion technology for improving solubility of poorly water-soluble drugs. Journal of Drug Delivery and Science Technology, 41, 68–77. DOI: https://doi.org/10.1016/j.jddst.2017.06.010

Chaudhary, A., Nagaich, U., Gulati, N., Sharma, V., & Khosa, R. (2012). Enhancement of solubilisation and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. Journal of Advanced Pharmacy Education & Research, 2(1), 32–67.

Chen, H., Khemtong, C., Yang, X., Chang, X., & Gao, J. (2011). Nanonization strategies for poorly water-soluble drugs. Drug Discovery Today, 16(7–8), 354–360. https://doi.org/10.1016/j.drudis.2010.02.009 DOI: https://doi.org/10.1016/j.drudis.2010.02.009

Chin, G. S., Todo, H., Kadhum, W. R., Hamid, M. A., & Sugibayashi, K. (2016). In vitro permeation and skin retention of ?-mangostin proniosome. Chemical and Pharmaceutical Bulletin, 64(12), 1666–1673. DOI: https://doi.org/10.1248/cpb.c16-00425

Dahan, A., Miller, J. M., & Amidon, G. L. (2009). Prediction of solubility and permeability class membership: Provisional BCS classification of the world’s top oral drugs. AAPS Journal, 11(4), 740–746. DOI: https://doi.org/10.1208/s12248-009-9144-x

Dempe, J. S., Scheerle, R. K., Pfeiffer, E., & Metzler, M. (2012). Metabolism and permeability of curcumin in cultured Caco-2 cells. Molecular Nutrition & Food Research, 57(9), 1543–1549. https://doi.org/10.1002/mnfr.201200113 DOI: https://doi.org/10.1002/mnfr.201200113

Ducheyne, P., Grainger, D. W., Healy, K. E., Hutmacher, D. W., & Kirkpatrick, C. J. (2017). Comprehensive biomaterials II 3, 384–386. Elsevier.

Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology, 31(1), 13–26. https://doi.org/10.1016/j.tifs.2012.03.005 DOI: https://doi.org/10.1016/j.tifs.2012.03.005

Do, H. T. T., & Cho, J. (2020). Mangosteen pericarp and its bioactive xanthones: Potential therapeutic value in Alzheimer’s disease, Parkinson’s disease, and depression with pharmacokinetic and safety profiles. International Journal of Molecular Sciences, 21(17), 6211. DOI: https://doi.org/10.3390/ijms21176211

Górnicka, J., Mika, M., Wróblewska, O., Siudem, P., & Paradowska, K. (2023). Methods to improve the solubility of curcumin from turmeric. Life, 13(1), 207. DOI: https://doi.org/10.3390/life13010207

Guo, M., Wang, X., Lu, X., Wang, H., & Brodelius, P. E. (2016). ?-Mangostin extraction from the native mangosteen (Garcinia mangostana L.) and the binding mechanisms of ?-mangostin to HSA or TRF. PLOS One, 11(9), e0161566. https://doi.org/10.1371/journal.pone.0161566 DOI: https://doi.org/10.1371/journal.pone.0161566

Gurunath, S., Pradeep Kumar, S., Basavaraj, N. K., & Patil, P. A. (2013). Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs. Journal of Pharmacy Research, 6(4), 476–480. DOI: https://doi.org/10.1016/j.jopr.2013.04.008

Hassan, S., Adam, F., Abu Bakar, M. R., & Abdul Mudalip, S. K. (2019). Evaluation of solvents’ effect on solubility, intermolecular interaction energies and habit of ascorbic acid crystals. Journal of Saudi Chemical Society, 23(2), 239–248. DOI: https://doi.org/10.1016/j.jscs.2018.07.002

Hotarat, W., Phunpee, S., Rungnim, C., Wolschann, P., Kungwan, N., Ruktanonchai, U., Rungrotmongkol, T., & Hannongbua, S. (2019). Encapsulation of alpha-mangostin and hydrophilic beta-cyclodextrins revealed by all-atom molecular dynamics simulations. Journal of Molecular Liquids, 288, 110965. https://doi.org/10.1016/j.molliq.2019.110965 DOI: https://doi.org/10.1016/j.molliq.2019.110965

Hotarat, W., Nutho, B., Wolschann, P., Rungrotmongkol, T., & Hannongbua, S. (2020). Delivery of Alpha-Mangostin Using Cyclodextrins through a Biological Membrane: Molecular Dynamics Simulation. Molecules, 25(11), 2532. https://doi.org/10.3390/molecules25112532 DOI: https://doi.org/10.3390/molecules25112532

International Conference on Harmonisation (ICH) Harmonised Guideline. (2019). Biopharmaceutics classification system-based biowaivers: Biopharmaceutics classification of the drug substance. International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use. Retrieved January 27, 2025, from https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf

Iqbal, A., Muhammad Shuib, N. A., Darnis, D. S., Miskam, M., Abdul Rahman, N. R., & Adam, F. (2018). Synthesis and characterisation of rice husk ash silica drug carrier for ?-mangostin. Journal of Physical Science, 29, 95–107. DOI: https://doi.org/10.21315/jps2018.29.3.8

Jain, H., & Chella, N. (2020). Methods to improve the solubility of therapeutical natural products: A review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01082 DOI: https://doi.org/10.1007/s10311-020-01082-x

Jain, S., Goossens, H., Picchioni, F., Magusin, P., Mezari, B., & van Duin, M. (2005). Synthetic aspects and characterization of polypropylene–silica nanocomposites prepared via solid-state modification and sol–gel reactions. Polymer, 46(17), 6666–6681. https://doi.org/10.1016/j.polymer.2005.05.021 DOI: https://doi.org/10.1016/j.polymer.2005.05.021

Kalidason, A., & Kuroiwa, T. (2023). Nanoencapsulation of ?-mangostin using chitosan-oleic acid complexes: Evaluation of storage stability, in vitro release properties in simulated digestive environment, and bioaccessibility. Lebensmittel-Wissenschaft & Technologie, 188, 115406. https://doi.org/10.1016/j.lwt.2023.115406 DOI: https://doi.org/10.1016/j.lwt.2023.115406

Kasimedua, S., Thoppani, S. R., Pommalab, N., Orugonda, G., & Yelamanda, J. (2015). A review on solubility enhancement techniques. Journal of Comprehensive Pharmacy, 2, 36–41. DOI: https://doi.org/10.37483/JCP.2015.2202

Kaur, J., Aggarwal, G., Singh, G., & Rana, A. C. (2012). Improvement of drug solubility using solid dispersion. Journal of Pharmacological Sciences, 4, 47-53.

Kim, A., Pan-in, P., Wanichwecharungruang, S., & Hanes, J. (2014). Cellular trafficking and anticancer activity of garcinia mangostana extract-encapsulated polymeric nanoparticles. International Journal of Nanomedicine, 3677. https://doi.org/10.2147/ijn.s66511 DOI: https://doi.org/10.2147/IJN.S66511

Kumar, B. (2017). Solid dispersion—a review. PharmaTutor, 5, 24–29.

Lavilla, C., Gubbels, E., Martínez de Ilarduya, A., Noordover, B. A. J., Koning, C. E., & Muñoz-Guerra, S. (2013). Solid-state modification of PBT with cyclic acetalized galactitol and d-mannitol: Influence of composition and chemical microstructure on thermal properties. Macromolecules, 46(11), 4335–4345. https://doi.org/10.1021/ma400760d DOI: https://doi.org/10.1021/ma400760d

Lee, W. J., Ng, C. C., Ng, J. S., Smith, R. L., Kok, S. L., Hee, Y. Y., … Chong, G. H. (2019). Supercritical carbon dioxide extraction of ?-mangostin from mangosteen pericarp with virgin coconut oil as co-extractant and in-vitro bio-accessibility measurement. Process Biochemistry. https://doi.org/10.1016/j.procbio.2019.09.009 DOI: https://doi.org/10.1016/j.procbio.2019.09.009

Li, J., Volpe, D. A., Wang, Y., Zhang, W., Bode, C., Owen, A., & Hidalgo, I. J. (2011). Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metabolism and Disposition, 39(7), 1196–1202. https://doi.org/10.1124/dmd.111.038075 DOI: https://doi.org/10.1124/dmd.111.038075

Li, L., Brunner, I., Han, A. R., Hamburger, M., Kinghorn, A. D., & Frye, R. (2011). Pharmacokinetics of ?-mangostin in rats after intravenous and oral application. Molecular Nutrition & Food Research, 55 (1), 67–74. DOI: https://doi.org/10.1002/mnfr.201000511

Limwikrant, W., Aung, T., Chooluck, K., Puttipipatkhachorn, S., & Yamamoto, K. (2019). Size reduction efficiency of alpha-mangostin suspension using high-pressure homogenization. Chemical and Pharmaceutical Bulletin, 67(4), 389–392. https://doi.org/10.1248/cpb.c18-00589 DOI: https://doi.org/10.1248/cpb.c18-00589

?uczak, J., Kroczewska, M., Baluk, M., Sowik, J., Mazierski, P., & Zaleska-Medynska, A. (2023). Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 314, 102864. https://doi.org/10.1016/j.cis.2023.102864 DOI: https://doi.org/10.1016/j.cis.2023.102864

Mantri, R. V., Sanghvi, R., & Zhu, H. (2017). Solubility of Pharmaceutical Solids. Developing Solid Oral Dosage Forms, 3–22. https://doi.org/10.1016/b978-0-12-802447-8.00001-7 DOI: https://doi.org/10.1016/B978-0-12-802447-8.00001-7

Mardianingrum, R., Endah, S. R., Daruwati, I., Muchtaridi, M., & Ruswanto, R. (2024). Synthesis and computational study of metal complex of ?-mangostin as an anticancer candidate. Journal of Pharmacy & Pharmacognosy Research, 12(3), 423–438. https://doi.org/10.56499/jppres23.1827_12.3.423 DOI: https://doi.org/10.56499/jppres23.1827_12.3.423

Meylina, L., Muchtaridi, M., Joni, I. M., Mohammed, A. F., & Wathoni, N. (2021). Nanoformulations of ?-mangostin for cancer drug delivery system. Pharmaceutics, 13(12), 1993. https://doi.org/10.3390/pharmaceutics13121993 DOI: https://doi.org/10.3390/pharmaceutics13121993

Mudalip, S. K., Bakar, Mohd. R., Adam, F., & Jamal, P. (2013). Structures and hydrogen bonding recognition of mefenamic acid form I crystals in mefenamic acid/ethanol solution. International Journal of Chemical Engineering and Applications, 124–128. DOI: https://doi.org/10.7763/IJCEA.2013.V4.277

Narasimhan, S., S. Maheshwaran, I. A. Abu-Yousef, A. F. Majdalawieh, J. Rethavathi, P. E. Das and Poltronieri. P. (2017). Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of alpha-Mangostin from Garcinia mangostana. Molecules 22(2). DOI: https://doi.org/10.3390/molecules22020275

National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 3672, Ibuprofen. Retrieved August 21, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen.

Pan-in, P., Tachapruetinun, A., Chaichanawongsaroj, N., Banlunara, W., Suksamrarn, S., & Wanichwecharungruang, S. (2014). Combating Helicobacter pylori infections with mucoadhesive nanoparticles loaded with Garcinia mangostana extract. Nanomedicine, 9(3), 457–468. https://doi.org/10.2217/nnm.13.30 DOI: https://doi.org/10.2217/nnm.13.30

Peltonen, L., & Strachan, C. J. (2020). Degrees of order: a comparison of nanocrystal and amorphous solids for poorly soluble drugs. International Journal of Pharmaceutics, 119492. doi:10.1016/j.ijpharm.2020.119492 DOI: https://doi.org/10.1016/j.ijpharm.2020.119492

Phunpee, S., Suktham, K., Surassmo, S., Jarussophon, S., Rungnim, C., & Soottitantawat, A. (2018). Controllable encapsulation of ?-mangostin with quaternized ?-cyclodextrin grafted chitosan using high shear mixing. International Journal of Pharmacy, 538, 21–29. DOI: https://doi.org/10.1016/j.ijpharm.2017.12.016

Pham, D. T., Saelim, N., & Tiyaboonchai, W. (2019). Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids and Surfaces Biointerfaces, 181, 705–713. doi:10.1016/j.colsurfb.2019.06.011 DOI: https://doi.org/10.1016/j.colsurfb.2019.06.011

Pranjali, W. C., Tushar, A. S., & Anup, M. A. (2018). Effect of trimethoprim inclusion complexation with cyclodextrins on its antimicrobial activity. Chemical Methodologies, 3, 211–225.

Ramaiya, A., Li, G., M. Petiwala, S., & J. Johnson, J. (2012). Single-dose oral pharmacokinetic profile of ?-mangostin in mice. Current Drug Targets, 13, 1698–1704. DOI: https://doi.org/10.2174/138945012804545524

Rodde, M. S., Divase, G. T., Devkar, T. B., Tekade, A. R. (2014). Solubility and bioavailability enhancement of poorly aqueous soluble atorvastatin: In vitro, ex vivo, and in vivo studies. BioMed Research International, 463895. https://doi.org/10.1155/2014/463895 DOI: https://doi.org/10.1155/2014/463895

Sakpakdeejaroen, I., Muanrit, P., Panthong, S., & Ruangnoo, S. (2022). Alpha-Mangostin-Loaded Transferrin-Conjugated Lipid-Polymer Hybrid Nanoparticles: Development and Characterization for Tumor-Targeted Delivery. The Scientific World Journal, 2022, 9217268. https://doi.org/10.1155/2022/9217268 DOI: https://doi.org/10.1155/2022/9217268

Samprasit, W., Kaomongkolgit, R., Sukma, M., Rojanarata, T., Ngawhirunpat, T., & Opanasopit, P. (2014). Mucoadhesive electrospun chitosan-based nanofibre mats for dental caries prevention. Carbohydrate Polymers, 117, 933–940. https://doi.org/10.1016/j.carbpol.2014.10.026 DOI: https://doi.org/10.1016/j.carbpol.2014.10.026

Samprasit, W., Opanasopit, P., & Chamsai, B. (2021). Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible colon-targeted delivery. Pharmaceutical Development and Technology, 26(3), 362–372. doi:10.1080/10837450.2021.1873370 DOI: https://doi.org/10.1080/10837450.2021.1873370

Sanphui, P., Goud, N. R., Khandavilli, U. B. R., & Nangia, A. (2011). Fast dissolving curcumin cocrystals. Crystal Growth & Design, 11(9), 4135–4145. doi:10.1021/cg200704s DOI: https://doi.org/10.1021/cg200704s

Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: importance and enhancement techniques. ISRN Pharmacology, 1–10. DOI: 10.5402/2012/195727. DOI: https://doi.org/10.5402/2012/195727

Shah, H., Nair, A. B., Shah, J., Jacob, S., Bharadia, P., & Haroun, M. (2021). Proniosomal vesicles as an effective strategy to optimize naproxen transdermal delivery. Journal of Drug Delivery Science and Technology, 63, 102479. doi:10.1016/j.jddst.2021.102479 DOI: https://doi.org/10.1016/j.jddst.2021.102479

Singh, J., Walia, M., & Harikumar, S. L. (2013). Solubility enhancement by solid dispersion method: a review. Journal of Drug Delivery and Therapeutics, 3, 148–155. DOI: https://doi.org/10.22270/jddt.v3i5.632

Suhandi, C., Wilar, G., Lesmana, R., Zulhendri, F., Suharyani, I., Hasan, N., & Wathoni, N. (2023). Propolis-Based Nanostructured Lipid Carriers for ?-Mangostin Delivery: Formulation, Characterization, and In Vitro Antioxidant Activity Evaluation. Molecules, 28(16), 6057. https://doi.org/10.3390/molecules28166057 DOI: https://doi.org/10.3390/molecules28166057

Suthammarak, W., Numpraphrut, P., Charoensakdi, R., Neungton, N., Tunrungruangtavee, V., Jaisupa, N., Charoensak, S., Moongkarndi, P., & Muangpaisan, W. (2016). Antioxidant-enhancing property of the polar fraction of mangosteen pericarp extract and evaluation of its safety in humans. Oxidative Medicine and Cellular Longevity, 1293036. DOI: https://doi.org/10.1155/2016/1293036

Taher, M., Mohamed Amiroudine, M. Z. A., Tengku Zakaria, T. M. F. S., Susanti, D., Ichwan, S. J. A., Kaderi, M. A., … Zakaria, Z. A. (2015). ?-Mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 cells via PPAR?, GLUT4, and leptin expressions. Evidence-Based Complementary and Alternative Medicine, 1–9. DOI: https://doi.org/10.1155/2015/740238

Tatiya-aphiradee, N., Chatuphonprasert, W., & Jarukamjorn, K. (2019). Anti-inflammatory effect of Garcinia mangostana Linn. pericarp extract in methicillin-resistant *Staphylococcus aureus*-induced superficial skin infection in mice. Biomedicine & Pharmacotherapy, 111, 705–713. DOI: https://doi.org/10.1016/j.biopha.2018.12.142

Taniguchi, C., Kawabata, Y., Wada, K., Yamada, S., & Onoue, S. (2014). Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opinion on Drug Delivery, 11(4), 505–516. doi:10.1517/17425247.2014.881798 DOI: https://doi.org/10.1517/17425247.2014.881798

Ting, J. M., Porter, W. W., Mecca, J. M., Bates, F. S., & Reineke, T. M. (2018). Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery. Bioconjugate Chemistry, 29(4), 939–952. doi:10.1021/acs.bioconjchem.7b006 DOI: https://doi.org/10.1021/acs.bioconjchem.7b00646

Tran, P., Pyo, Y.-C., Kim, D.-H., Lee, S.-E., Kim, J.-K., & Park, J.-S. (2019). Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 11(3), 132. https://doi.org/10.3390/pharmaceutics11030132 DOI: https://doi.org/10.3390/pharmaceutics11030132

Vermeersdch, H. (2016). Solubility and permeation studies using soluplus® and HPMC with a BCS class II amorphous drug. Journal of Pharmaceutical Research International, 18, 1–40. DOI: https://doi.org/10.9734/JPRI/2017/36872

Wathoni, N., Rusdin, A., Motoyama, K., Joni, I. M., Lesmana, R., & Muchtaridi, M. (2020). Nanoparticle drug delivery systems for ?-mangostin. Nanotechnology, Science and Applications, 13, 23–36. https://doi.org/10.2147/nsa.s243017 DOI: https://doi.org/10.2147/NSA.S243017

Witharamage, C. S., Christudasjustus, J., & Gupta, R. K. (2021). The effect of milling time and speed on solid solubility, grain size, and hardness of Al-V alloys. Journal of Materials Engineering and Performance, 30(4), 3144–3158. https://doi.org/10.1007/s11665-021-05663-x DOI: https://doi.org/10.1007/s11665-021-05663-x

Yang, S., Gao, X., He, Y., Hu, Y., Xu, B., Cheng, Z., Xiang, M., & Xie, Y. (2019). Applying an innovative biodegradable self-assembly nanomicelles to deliver ?-mangostin for improving anti-melanoma activity. Cell Death & Disease, 10(3). https://doi.org/10.1038/s41419-019-1323-9 DOI: https://doi.org/10.1038/s41419-019-1323-9

Yasir, M., Asif, M., Kumar, A., & Aggarval, A. (2010). Biopharmaceutical classification system: an account. International Journal of PharmTech Research, 2, 1681–1690.

Zhang, K. J., Gu, Q. L., Yang, K., Ming, X. J., & Wang, J. X. (2017). Anticarcinogenic effects of ?-mangostin: A review. Planta Medica, 83(3-4), 188–20. DOI: https://doi.org/10.1055/s-0042-119651