The Investigation of Phytochemicals and Antioxidant Properties of Champereia Manillana(Blume) Merr Stem Bark

Authors

  • Anis Solehah Azman Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia https://orcid.org/0009-0008-4750-5037
  • Siti Zaiton Mat So'ad Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kuliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. https://orcid.org/0000-0003-2769-0120

DOI:

https://doi.org/10.31436/jop.v4i2.303

Keywords:

Champereia manillana, phytochemical screening, total flavonoid content, total phenolic content, antioxidant

Abstract

Champereia manillana (Blume) Merr. is one of the plant species that lacks research despite many beneficial claims from consumers. Studies conducted on this species have merely discussed bioactive phytochemicals in the leaves and roots. Therefore, the objectives of this study are to screen for terpenoids, triterpenoids, diterpenoids, carotenoids, flavonoids, phenolics, and steroids, and to evaluate the antioxidant activities of C. manillana stem bark methanolic extract. The plant material was collected from the Forest of ‘Ilm, IIUM. The stem bark powder was macerated in methanol. Phytochemical screening tests were utilized to determine the presence of the phytochemicals. Thin-layer chromatography (TLC) analysis was carried out on the samples using iodine vapor, ferric chloride solution, vanillin solution, and UV light. Next, the total phenolic and flavonoid content tests were conducted to obtain quantitative results, and the antioxidant activity was assessed using the DPPH assay. C. manillana stem bark extract tested positive for steroid and terpenoid contents and negative for carotenoids and flavonoids. For the TLC, the extract was found positive for iodine vapor, UV light, and vanillin/H2SO4 and negative for the ferric chloride test. The flavonoid content was 0.995 mg CE/g, while the phenolic content was 12.326 mg GAE/g. For the DPPH assay, the IC50 value was high (26 mg/mL) compared to the positive control, ascorbic acid, which had an IC50 value of 6.730 µg/mL. The percentage inhibition at 10 mg/mL was 23.4%. Phytochemical screening indicates the presence of steroids and terpenoids in C. manillana stem bark methanolic extract. Compared to the standard (ascorbic acid), the antioxidant activity of the extract is very weak.

References

Ajayi, & Ajibade O. (2011). Preliminary Phytochemical Analysis of some Plant Seeds. J.Chem.Sci. Research Journal of Chemical Sciences, 1(3). Retrieved from https://www.isca.me/rjcs/Archives/v1/i3/08.pdf

Ameerah Shaeroun, A. R., Hamed Alqamoudy, A. B. A., Mohamed, Khalifa. S., Nouri Kushlaf, N. A., Akram Almabrouk misbah, A. M. EL-mahmoudy., & Zuhur rajab Almes, S. T. O. (2019). Thin Layer Chromatography (TLC) and Phytochemical Analysis of Moringa Oleifera Methanol, Ethanol, Water and Ethyl Acetate Extracts. Saudi Journal of Medical and Pharmaceutical Sciences, 05(10), 817–820. https://doi.org/10.36348/sjmps.2019.v05i10.002

Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., & Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants, 8(4), 96. https://doi.org/10.3390/plants8040096

Aspé, E., & Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products, 34(1), 838–844. https://doi.org/10.1016/j.indcrop.2011.02.002

Bogacz-Radomska, L., & Harasym, J. (2018). ?-Carotene—properties and production methods. Food Quality and Safety, 2(2), 69–74. https://doi.org/10.1093/fqsafe/fyy004

Carvalho, A. M. S., Heimfarth, L., Pereira, E. W. M., Oliveira, F. S., Menezes, I. R. A., Coutinho, H. D. M., … Quintans-Júnior, L. J. (2020). Phytol, a Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NF?B Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-? and IL-6. Journal of Natural Products, 83(4), 1107–1117. https://doi.org/10.1021/acs.jnatprod.9b01116

Cempereia manillana Merr. – Opiliaceae – 81 – Forest of 'Ilm. (2022, July 19). Retrieved June 16, 2024, from Forest of Ilm KOP IIUM website: https://forest-ilm.iium.edu.my/81-cempereia-manillana/

Denny, Marfuah Wardani, & Adi Susilo. (2021). Diversity and potential utilization of medicinal plants in Way Kambas National Park. IOP Conference Series, 914(1), 012001–012001. https://doi.org/10.1088/1755-1315/914/1/012001

Deshmukh, M. A., & Theng, M. A. (2018). Phytochemical Screening, Quantitative Analysis of Primary and Secondary Metabolite of Acacia arabica Bark. International Journal of Current Pharmaceutical Research, 10(2), 35. https://doi.org/10.22159/ijcpr.2018v10i2.25889

Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical Screening and Antimicrobial Activity Evaluation of Selected Medicinal Plants in Ethiopia. Journal of Experimental Pharmacology, Volume 15, 51–62. https://doi.org/10.2147/jep.s379805.

Ezzat, S. M., Salama, M. M., Seif el-Din, S. H., & Saleh, S. (2014). Chemotaxonomic and biological studies of the genus Euphorbia in Egypt. Turkish Journal of Botany, 38(3), 485-500.

Goltz, S. R., Campbell, W. W., Chitchumroonchokchai, C., Failla, M. L., & Ferruzzi, M. G. (2012). Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Molecular Nutrition & Food Research, 56(6), 866-877

Hashmi, H. F., & Bibi, S. (2021). Qualitative and Quantitative Analysis of Phytochemicals in Lepidium pinnatifidum Ledeb. Scholars International Journal of Traditional and Complementary Medicine . https://doi.org/10.36348/sijtcm.2021.v04i05.002

Herald, T. J., Gadgil, P., & Tilley, M. (2012). High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture, 92(11), 2326–2331. https://doi.org/10.1002/jsfa.5633

K. Jeyaprakash, & N. Balachandran. (2018). Champereia manillana (Blume) Merr. (Opiliaceae) and Stemodiaverticillata (Mill.) Hassl. (Plantaginaceae): New distributional records to North East India.

Lawag, I. L., Nolden, E. S., Schaper, A. A. M., Lim, L. Y., & Locher, C. (2023). A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Applied Sciences, 13(4), 2135. https://doi.org/10.3390/app13042135

Mbah, C. J., & Eme, P. E. (2017). Comparative study of the effects of different extraction techniques on antioxidant properties of Ficus capensis. International Journal of Plant Research, 7(1), 1-8.

Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. M., Levi, R., … Querio, G. (2020). Squalene: More than a Step toward Sterols. Antioxidants, 9(8), 688. https://doi.org/10.3390/antiox9080688

Munteanu, I. G., & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380

Musa, H. H., Musa, T. H., Oderinde, O., Musa, I. H., Shonekan, O. O., Akintunde, T. Y., & Onasanya, A. K. (2022). Traditional herbal medicine: overview of research indexed in the scopus database. Advances in Traditional Medicine. https://doi.org/10.1007/s13596-022-00670-2

Molole, G. J., Gure, A., & Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1). https://doi.org/10.1186/s13065-022-00841-x

N.T.R., M. (2013a). Antioxidant activity of phenolic and flavonoid fractions of Cleome gynandra and Maerua angolensis of Burkina Faso. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2013.30207

N.T.R., M. (2013b). Antioxidant activity of phenolic and flavonoid fractions of Cleome gynandra and Maerua angolensis of Burkina Faso. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2013.30207

Ollo Youl, Ramata, B., Sibidou Yougbaré, Boubacar Yaro, Tata Kadiatou Traoré, Raïnatou Boly, Josias B. Gérard Yaméogo, Moumouni Koala, Noufou Ouédraogo, Elie Kabré, Tinto, H., Maminata Traoré-Coulibaly, & Adama Hilou. (2023). Phytochemical Screening, Polyphenol and Flavonoid Contents, and Antioxidant and Antimicrobial Activities of Opilia amentacea Roxb. (Opiliaceae) Extracts. Applied Biosciences, 2(3), 493–512. https://doi.org/10.3390/applbiosci2030031

Qin, Z., Liu, H.-M., Ma, Y.-X., & Wang, X.-D. (2021). Developments in extraction, purification, and structural elucidation of proanthocyanidins (2000–2019). Bioactive Natural Products, 347–391. https://doi.org/10.1016/b978-0-12- 819485-0.00008-6

Rahman, A., Rindam Latief, & H Kartono. (2023). Extraction and analysis of lutein and antioxidant activities from red spinach’s root, stem, and leaf. IOP Conference Series, 1200(1), 012021–012021. https://doi.org/10.1088/1755- 1315/1200/1/012021

Sim?i?, M., Stibilj, V., & Holcman, A. (2011). Fatty acid composition of eggs produced by the Slovenian autochthonous Styrian hen. Food Chemistry, 125(3), 873–877. https://doi.org/10.1016/j.foodchem.2010.09.055

Trease, G. E., & Evans, W. C. (2009). Pharmacognosy (16th ed.). SaundersElsevier.

Tungmunnithum, D.Thongboonyou,A.,Pholboon,A.,&Yangsabai,A.(2018). Flavonoids

and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093

Welz, A. N., Emberger-Klein, A., & Menrad, K. (2018). Why people use herbal

medicine: insights from a focus-group study in Germany. BMC Complementary and Alternative Medicine, 18(92). https://doi.org/10.1186/s12906-018-2160-6

Wilson, C. R., Butz, J. K., & Mengel, M. C. (2014). Methods for Analysis of Gastrointestinal Toxicants?. Reference Module in Biomedical Sciences. https://doi.org/10.1016/b978-0-12-801238-3.02125-5

Yahyaoui, O. E., Ouaaziz, N. A., Guinda, I., Sammama, A., Kerrouri, S., Bouabid, B., Bakkall, M. E., Quyou, A., Lrhorfi, L. A., & Bengueddour, R. (2017). Phytochemical screening and thin layer chromatography of two medicinal plants: Adansonia digitata (Bombacaceae) and Acacia raddiana (Fabaceae). Journal of Pharmacognosy and Phytochemistry, 6(1):10-15.

Yang, G.-S., Wang, Y.-H., Wang, Y.-H., & Shen, S.-K. (2017). The complete chloroplast genome of a vulnerable species Champereia manillana (Opiliaceae). Conservation Genetics Resources, 9(3), 415–418. https://doi.org/10.1007/s12686-017-0697-1

Yazdani, M., Hojjati, M., Sharifani, M., & Shariati, M. A. (2021). Phytochemical analysis and antioxidant activity of some selected medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 21, Article 100307

Y. Ragasa, C., A. Ulep, R., Vincent Antonio S. Ng, & Robert Brklja?a. (2015). Chemical Constituents of Champereia manillana (Blume) Merrill. Scholar Research Library, 1–6. Retrieved from https://www.scholarsresearchlibrary.com/articles/chemical-constituents-of-champereia-manillana-blume-merrill.pdf

Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for Extraction and Isolation of Natural products: a Comprehensive Review. Chinese Medicine, 13(1). https://doi.org/10.1186/s13020-018-0177

Downloads

Published

2024-07-31

How to Cite

Azman, A. S., & Mat So’ad, S. Z. (2024). The Investigation of Phytochemicals and Antioxidant Properties of Champereia Manillana(Blume) Merr Stem Bark. Journal of Pharmacy, 4(2), 151–164. https://doi.org/10.31436/jop.v4i2.303

Issue

Section

Original Articles

Most read articles by the same author(s)