Surveys on the Security of Ethereum and Hyperledger Fabric Blockchain Platforms
DOI:
https://doi.org/10.31436/ijpcc.v11i1.526Keywords:
IoT, Blockchain, Ethereum, Hyperledger, Security, InteroperabilityAbstract
Ethereum and Hyperledger are two popular and well-known block chain platforms which represent two kinds of application differentiation. Ethereum is a decentralized platform that also allows DApps to operate on it; many of the conditions for performing functions on Ethereum’s blockchain do not require permission to be granted, but smart contracts are available. On the other hand, the Hyperledger Fabric, an enterprise grade blockchain solution, provides the permission to access, update, and apply scalability, privatization, and mandatory access control mechanisms. Due to the decentralized nature and the capacity of performing smart contracts using Ethereum Virtual Machine (EVM), it has been used in a number of areas across the world in financial transactions and DApp. Hyperledger fabric, on the other hand, is pursuant to the permissioned network standards and is centred on providing the set of components that suffice the requirement of an enterprise thereby making it easier for the organization to build a blockchain, which is both highly scalable and security conscious. Some of the studies have researched on Ethereum as well as Hyperledger Fabric in a variety of contexts as depicted by the following: From these studies, it explains how blockchain has the potential in increasing volume in various areas while enhancing its characteristics such as, openness, origin and audibility. Analysing the concrete features of the Ethereum and Hyperledger Fabric platforms, it is almost obligatory for the companies interested into the implementation of the blockchain technology to understand the possibilities offered by one system and the drawbacks some complexity or singularity of the other. That is why, the features of each platform are distinctive and could be utilized for the development of business processes in specific spheres when designing problem-solving approaches.
References
H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks and Defenses,” 2019, arXiv. doi: 10.48550/ARXIV.1908.04507.
Y. Xie, J. Jin, J. Zhang, S. Yu, and Q. Xuan, “Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking,” 2021, arXiv. doi: 10.48550/ARXIV.2102.08013.
S. A. Amri, L. Aniello, and V. Sassone, “A Review of Upgradeable Smart Contract Patterns based on OpenZeppelin Technique,” The JBBA, vol. 6, no. 1, pp. 1–8, Apr. 2023, doi: 10.31585/jbba-6-1-(3)2023.
S. Pandey et al., “Do-It-Yourself Recommender System: Reusing and Recycling With Blockchain and Deep Learning,” IEEE Access, vol. 10, pp. 90056–90067, 2022, doi: 10.1109/ACCESS.2022.3199661.
J. Kim, K. Lee, G. Yang, K. Lee, J. Im, and C. Yoo, “QiOi: Performance Isolation for Hyperledger Fabric,” Applied Sciences, vol. 11, no. 9, p. 3870, Apr. 2021, doi: 10.3390/app11093870.
R. Alotaibi, M. Alassafi, Md. S. I. Bhuiyan, R. S. Raju, and M. S. Ferdous, “A Reinforcement-Learning-Based Model for Resilient Load Balancing in Hyperledger Fabric,” Processes, vol. 10, no. 11, p. 2390, Nov. 2022, doi: 10.3390/pr10112390.
H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks and Defenses,” 2019, arXiv. doi: 10.48550/ARXIV.1908.04507.
R. Zhang, R. Xue, and L. Liu, “Security and Privacy on Blockchain,” ACM Comput. Surv., vol. 52, no. 3, pp. 1–34, May 2020, doi: 10.1145/3316481.
A. Roehrs, C. A. Da Costa, R. Da Rosa Righi, V. F. Da Silva, J. R. Goldim, and D. C. Schmidt, “Analyzing the performance of a blockchain-based personal health record implementation,” Journal of Biomedical Informatics, vol. 92, p. 103140, Apr. 2019, doi: 10.1016/j.jbi.2019.103140.
M. Islam, M. H. Rehmani, and J. Chen, “Differential Privacy-based Permissioned Blockchain for Private Data Sharing in Industrial IoT,” 2021, arXiv. doi: 10.48550/ARXIV.2102.09857.
Q. Wang and S. Qin, “A Hyperledger Fabric-Based System Framework for Healthcare Data Management,” Applied Sciences, vol. 11, no. 24, p. 11693, Dec. 2021, doi: 10.3390/app112411693.
L. Foschini, A. Gavagna, G. Martuscelli, and R. Montanari, “Hyperledger Fabric Blockchain: Chaincode Performance Analysis,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland: IEEE, Jun. 2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9149080.
G. Llambias, B. Bradach, J. Nogueira, L. González, and R. Ruggia, “Gateway-based Interoperability for DLT,” Feb. 22, 2023. doi: 10.36227/techrxiv.22120520.
D. L. Dinesha and B. Patil, “Achieving Interoperability in Heterogeneous Blockchain Users Through Inter-Blockchain Communication Protocol,” Nov. 22, 2022. doi: 10.36227/techrxiv.21532953.v2.
C. Stamatellis, P. Papadopoulos, N. Pitropakis, S. Katsikas, and W. Buchanan, “A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric,” Sensors, vol. 20, no. 22, p. 6587, Nov. 2020, doi: 10.3390/s20226587.
S. Chenthara, K. Ahmed, H. Wang, F. Whittaker, and Z. Chen, “Healthchain: A novel framework on privacy preservation of electronic health records using blockchain technology,” PLoS ONE, vol. 15, no. 12, p. e0243043, Dec. 2020, doi: 10.1371/journal.pone.0243043.
P. Dutta, T.-M. Choi, S. Somani, and R. Butala, “Blockchain technology in supply chain operations: Applications, challenges and research opportunities,” Transportation Research Part E: Logistics and Transportation Review, vol. 142, p. 102067, Oct. 2020, doi: 10.1016/j.tre.2020.102067.
T.-T. Kuo, H.-E. Kim, and L. Ohno-Machado, “Blockchain distributed ledger technologies for biomedical and health care applications,” Journal of the American Medical Informatics Association, vol. 24, no. 6, pp. 1211–1220, Nov. 2017, doi: 10.1093/jamia/ocx068.
P. Tagde et al., “Blockchain and artificial intelligence technology in e-Health,” Environ Sci Pollut Res, vol. 28, no. 38, pp. 52810–52831, Oct. 2021, doi: 10.1007/s11356-021-16223-0.
A. Henninger and A. Mashatan, “Distributed Renewable Energy Management: A Gap Analysis and Proposed Blockchain-Based Architecture,” JRFM, vol. 15, no. 5, p. 191, Apr. 2022, doi: 10.3390/jrfm15050191.
M. N. M. Bhutta et al., “A Survey on Blockchain Technology: Evolution, Architecture and Security,” IEEE Access, vol. 9, pp. 61048–61073, 2021, doi: 10.1109/ACCESS.2021.3072849.
T. G. Bao and D. M. Phan, “Blockchain applications in business and financial activities in Vietnam: Situation, trends, opportunities and challenges,” irjmis, vol. 9, no. 6, pp. 766–776, Sep. 2022, doi: 10.21744/irjmis.v9n6.2187.
Z. Yu, D. Xue, J. Fan, and C. Guo, “DNSTSM: DNS Cache Resources Trusted Sharing Model Based on Consortium Blockchain,” IEEE Access, vol. 8, pp. 13640–13650, 2020, doi: 10.1109/ACCESS.2020.2966428.
W. Yao, F. P. Deek, R. Murimi, and G. Wang, “SoK: A Taxonomy for Critical Analysis of Consensus Mechanisms in Consortium Blockchain,” 2021, doi: 10.48550/ARXIV.2102.12058.
V. Upadrista, S. Nazir, and H. Tianfield, “Consortium Blockchain for Reliable Remote Health Monitoring,” Jan. 04, 2024, In Review. doi: 10.21203/rs.3.rs-2297411/v1.
W. Pourmajidi, L. Zhang, J. Steinbacher, T. Erwin, and A. Miranskyy, “Immutable Log Storage as a Service on Private and Public Blockchains,” 2020, doi: 10.48550/ARXIV.2009.07834.
J. Yusoff, Z. Mohamad, and M. Anuar, “A Review: Consensus Algorithms on Blockchain,” JCC, vol. 10, no. 09, pp. 37–50, 2022, doi: 10.4236/jcc.2022.109003.
D. C. G. Valadares, A. Perkusich, A. M. Falcão, and C. Seline, “Privacy-Preserving Blockchain Technologies,” May 26, 2023, Computer Science and Mathematics. doi: 10.20944/preprints202305.1874.v1.
H. C. Hwang, J. G. Shon, and J. S. Park, “Design of an Enhanced Web Archiving System for Preserving Content Integrity with Blockchain,” Electronics, vol. 9, no. 8, p. 1255, Aug. 2020, doi: 10.3390/electronics9081255.
L. M. Palma, M. A. G. Vigil, F. L. Pereira, and J. E. Martina, “Blockchain and smart contracts for higher education registry in Brazil,” Int J Network Mgmt, vol. 29, no. 3, p. e2061, May 2019, doi: 10.1002/nem.2061.
X. Wang et al., “A High-Performance Hybrid Blockchain System for Traceable IoT Applications,” in Network and System Security, vol. 11928, J. K. Liu and X. Huang, Eds., in Lecture Notes in Computer Science, vol. 11928. , Cham: Springer International Publishing, 2019, pp. 721–728. doi: 10.1007/978-3-030-36938-5_47.
D. Zhuang and J. M. Chang, “Enhanced PeerHunter: Detecting Peer-to-Peer Botnets Through Network-Flow Level Community Behavior Analysis,” IEEE Trans.Inform.Forensic Secur., vol. 14, no. 6, pp. 1485–1500, Jun. 2019, doi: 10.1109/TIFS.2018.2881657.
A. A. Mohammed and D. J. Kadhim, “Analysis of threats and security issues evaluation in mobile P2P networks,” IJECE, vol. 10, no. 6, p. 6435, Dec. 2020, doi: 10.11591/ijece.v10i6.pp6435-6445.
D. Kazacos Winter, R. Khatri, and M. Schmidt, “Decentralized Prosumer-Centric P2P Electricity Market Coordination with Grid Security,” Energies, vol. 14, no. 15, p. 4665, Aug. 2021, doi: 10.3390/en14154665.
A. Hu, X. Gong, and L. Guo, “Diffractive Encryption: A Brand-New Chaotic Encryption Model,” Feb. 28, 2022, In Review. doi: 10.21203/rs.3.rs-1389312/v1.
C. Yang, B. Song, Y. Ding, J. Ou, and C. Fan, “Efficient Data Integrity Auditing Supporting Provable Data Update for Secure Cloud Storage,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–12, Mar. 2022, doi: 10.1155/2022/5721917.
S. Joshi, “Feasibility of Proof of Authority as a Consensus Protocol Model,” 2021, arXiv. doi: 10.48550/ARXIV.2109.02480.
F. Yang, W. Zhou, Q. Wu, R. Long, N. N. Xiong, and M. Zhou, “Delegated Proof of Stake With Downgrade: A Secure and Efficient Blockchain Consensus Algorithm With Downgrade Mechanism,” IEEE Access, vol. 7, pp. 118541–118555, 2019, doi: 10.1109/ACCESS.2019.2935149.
J. Zhang, Y. Yang, D. Zhao, and Y. Wang, “A node selection algorithm with a genetic method based on PBFT in consortium blockchains,” Complex Intell. Syst., vol. 9, no. 3, pp. 3085–3105, Jun. 2023, doi: 10.1007/s40747-022-00907-2.
M. Hu, T. Shen, J. Men, Z. Yu, and Y. Liu, “CRSM: An Effective Blockchain Consensus Resource Slicing Model for Real-Time Distributed Energy Trading,” IEEE Access, vol. 8, pp. 206876–206887, 2020, doi: 10.1109/ACCESS.2020.3037694.
I. E. Kassmi and Z. Jarir, “Blockchain-oriented Inter-organizational Collaboration between Healthcare Providers to Handle the COVID-19 Process,” IJACSA, vol. 12, no. 12, 2021, doi: 10.14569/IJACSA.2021.0121294.
P. Bottoni, A. Labella, and R. Pareschi, “A formal model for ledger management systems based on contracts and temporal logic,” 2021, arXiv. doi: 10.48550/ARXIV.2109.15212.
S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic Review of Security Vulnerabilities in Ethereum Blockchain Smart Contract,” IEEE Access, vol. 10, pp. 6605–6621, 2022, doi: 10.1109/ACCESS.2021.3140091.
S. Maeng, M. Essaid, C. Lee, S. Park, and H. Ju, “Visualization of Ethereum P2P network topology and peer properties,” Int J Network Mgmt, vol. 31, no. 6, p. e2175, Nov. 2021, doi: 10.1002/nem.2175.
F. Jemili and O. Korbaa, “Hybrid Collaborative Intrusion Detection System Based on Blockchain & Machine Learning,” May 24, 2023, In Review. doi: 10.21203/rs.3.rs-2963689/v1.
S. Farrugia, J. Ellul, and G. Azzopardi, “Detection of illicit accounts over the Ethereum blockchain,” Expert Systems with Applications, vol. 150, p. 113318, Jul. 2020, doi: 10.1016/j.eswa.2020.113318.
Y. Liu, Y. Hei, T. Xu, and J. Liu, “An Evaluation of Uncle Block Mechanism Effect on Ethereum Selfish and Stubborn Mining Combined With an Eclipse Attack,” IEEE Access, vol. 8, pp. 17489–17499, 2020, doi: 10.1109/ACCESS.2020.2967861.
F. P. Oikonomou, G. Mantas, P. Cox, F. Bashashi, F. Gil-Castineira, and J. Gonzalez, “A Blockchain-based Architecture for Secure IoT-based Health Monitoring Systems,” in 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Porto, Portugal: IEEE, Oct. 2021, pp. 1–6. doi: 10.1109/CAMAD52502.2021.9617803.
Y. Madhwal, Y. Yanovich, S. Balachander, K. H. Poojaa, R. Saranya, and B. Subashini, “Enhancing Supply Chain Efficiency and Security: A Proof of Concept for IoT Device Integration With Blockchain,” IEEE Access, vol. 11, pp. 121173–121189, 2023, doi: 10.1109/ACCESS.2023.3328569.
M. J. M. Chowdhury et al., “A Comparative Analysis of Distributed Ledger Technology Platforms,” IEEE Access, vol. 7, pp. 167930–167943, 2019, doi: 10.1109/ACCESS.2019.2953729.
E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains,” 2018, doi: 10.48550/ARXIV.1801.10228.
Z. Leng, K. Wang, Y. Zheng, X. Yin, and T. Ding, “Hyperledger for IoT: A Review of Reconstruction Diagrams Perspective,” Electronics, vol. 11, no. 14, p. 2200, Jul. 2022, doi: 10.3390/electronics11142200.
J. Randolph et al., “Blockchain-based Medical Image Sharing and Automated Critical-results Notification: A Novel Framework,” in 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA: IEEE, Jun. 2022, pp. 1756–1761. doi: 10.1109/COMPSAC54236.2022.00279.
P. Praitheeshan, L. Pan, and R. Doss, “Private and Trustworthy Distributed Lending Model Using Hyperledger Besu,” SN COMPUT. SCI., vol. 2, no. 2, p. 115, Apr. 2021, doi: 10.1007/s42979-021-00500-3.
M. Salimitari, M. Joneidi, and M. Chatterjee, “AI-Enabled Blockchain: An Outlier-Aware Consensus Protocol for Blockchain-Based IoT Networks,” in 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA: IEEE, Dec. 2019, pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9013824.
K. Kanagi, C. C.-Y. Ku, L.-K. Lin, and W.-H. Hsieh, “Efficient Clinical Data Sharing Framework Based on Blockchain Technology,” Methods Inf Med, vol. 59, no. 06, pp. 193–204, Dec. 2020, doi: 10.1055/s-0041-1727193.
V. A. Siris, P. Nikander, S. Voulgaris, N. Fotiou, D. Lagutin, and G. C. Polyzos, “Interledger Approaches,” IEEE Access, vol. 7, pp. 89948–89966, 2019, doi: 10.1109/ACCESS.2019.2926880.
T. Fatokun, A. Nag, and S. Sharma, “Towards a Blockchain Assisted Patient Owned System for Electronic Health Records,” Electronics, vol. 10, no. 5, p. 580, Mar. 2021, doi: 10.3390/electronics10050580.
R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey on Blockchain Interoperability: Past, Present, and Future Trends,” 2020, arXiv. doi: 10.48550/ARXIV.2005.14282.
V. Ribeiro, R. Holanda, A. Ramos, and J. J. P. C. Rodrigues, “Enhancing Key Management in LoRaWAN with Permissioned Blockchain,” Sensors, vol. 20, no. 11, p. 3068, May 2020, doi: 10.3390/s20113068.
H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for Internet of Things: A Survey,” IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094, Oct. 2019, doi: 10.1109/JIOT.2019.2920987.
S. Dhingra, R. Raut, K. Naik, and K. Muduli, “Blockchain Technology Applications in Healthcare Supply Chains—A Review,” IEEE Access, vol. 12, pp. 11230–11257, 2024, doi: 10.1109/ACCESS.2023.3348813.
D. V. Dimitrov, “Blockchain Applications for Healthcare Data Management,” Healthc Inform Res, vol. 25, no. 1, p. 51, 2019, doi: 10.4258/hir.2019.25.1.51.
P. F. Wong, F. C. Chia, M. S. Kiu, and E. C. W. Lou, “Potential integration of blockchain technology into smart sustainable city (SSC) developments: a systematic review,” SASBE, vol. 11, no. 3, pp. 559–574, Nov. 2022, doi: 10.1108/SASBE-09-2020-0140.
S. Lu et al., “CCIO: A Cross-Chain Interoperability Approach for Consortium Blockchains Based on Oracle,” Sensors, vol. 23, no. 4, p. 1864, Feb. 2023, doi: 10.3390/s23041864.
R. Zhao, J. Zhou, R. Shi, and J. Shi, “Unidimensional Continuous Variable Quantum Key Distribution under Fast Fading Channel,” Annalen der Physik, vol. 536, no. 5, p. 2300401, May 2024, doi: 10.1002/andp.202300401.
Z. Li et al., “Polarization?Assisted Visual Secret Sharing Encryption in Metasurface Hologram,” Advanced Photonics Research, vol. 2, no. 11, p. 2100175, Nov. 2021, doi: 10.1002/adpr.202100175.
Y. Ding, C. Wang, Q. Zhong, H. Li, J. Tan, and J. Li, “Function-Level Dynamic Monitoring and Analysis System for Smart Contract,” IEEE Access, vol. 8, pp. 229161–229172, 2020, doi: 10.1109/ACCESS.2020.3046005.
M. Pustisek, J. Turk, and A. Kos, “Secure Modular Smart Contract Platform for Multi-Tenant 5G Applications,” IEEE Access, vol. 8, pp. 150626–150646, 2020, doi: 10.1109/ACCESS.2020.3013402.
N. Minsky and C. Cong, “Scalable, Secure and Broad-Spectrum Enforcement of Contracts, Without Blockchains,” 2019, arXiv. doi: 10.48550/ARXIV.1904.09940.
Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart Contract Security: A Software Lifecycle Perspective,” IEEE Access, vol. 7, pp. 150184–150202, 2019, doi: 10.1109/ACCESS.2019.2946988.
N. Lu, B. Wang, Y. Zhang, W. Shi, and C. Esposito, “NeuCheck: A more practical Ethereum smart contract security analysis tool,” Softw Pract Exp, vol. 51, no. 10, pp. 2065–2084, Oct. 2021, doi: 10.1002/spe.2745.
J.-P. Aumasson, D. Kolegov, and E. Stathopoulou, “Security Review of Ethereum Beacon Clients,” 2021, arXiv. doi: 10.48550/ARXIV.2109.11677.
A. H. H. Kabla et al., “Applicability of Intrusion Detection System on Ethereum Attacks: A Comprehensive Review,” IEEE Access, vol. 10, pp. 71632–71655, 2022, doi: 10.1109/ACCESS.2022.3188637.
N. T. Anthony, M. Shafik, F. Kurugollu, and H. F. Atlam, “Anomaly Detection System for Ethereum Blockchain Using Machine Learning,” in Advances in Transdisciplinary Engineering, M. Shafik and K. Case, Eds., IOS Press, 2022. doi: 10.3233/ATDE220608.
O. Alpos, C. Cachin, G. A. Marson, and L. Zanolini, “On the Synchronization Power of Token Smart Contracts,” 2021, arXiv. doi: 10.48550/ARXIV.2101.05543.
J.-L. Ferrer-Gomila and M. F. Hinarejos, “A Multi-Party Contract Signing Solution Based on Blockchain,” Electronics, vol. 10, no. 12, p. 1457, Jun. 2021, doi: 10.3390/electronics10121457.
O. Debauche et al., “RAMi: A New Real-Time Internet of Medical Things Architecture for Elderly Patient Monitoring,” Information, vol. 13, no. 9, p. 423, Sep. 2022, doi: 10.3390/info13090423.
X. Gu, H. Yang, S. Liu, and Z. Cui, “Smart Contract Vulnerability Detection Based on Clustering Opcode Instructions,” presented at the The 35th International Conference on Software Engineering and Knowledge Engineering, Jul. 2023, pp. 398–403. doi: 10.18293/SEKE2023-183.
A. Dhar Dwivedi, R. Singh, K. Kaushik, R. Rao Mukkamala, and W. S. Alnumay, “Blockchain and artificial intelligence for 5G?enabled Internet of Things: Challenges, opportunities, and solutions,” Trans Emerging Tel Tech, vol. 35, no. 4, p. e4329, Apr. 2024, doi: 10.1002/ett.4329.
F. Pelekoudas-Oikonomou, J. Ribeiro, G. Mantas, F. Bashashi, G. Sakellari, and J. Gonzalez, “A Tutorial on the Implementation of a Hyperledger Fabric-based Security Architecture for IoMT,” in 2023 IFIP Networking Conference (IFIP Networking), Barcelona, Spain: IEEE, Jun. 2023, pp. 1–6. doi: 10.23919/IFIPNetworking57963.2023.10186443.
Y. Khan et al., “BlockU: Extended usage control in and for Blockchain,” Expert Systems, vol. 37, no. 3, p. e12507, Jun. 2020, doi: 10.1111/exsy.12507.
X. Zheng, Y. Zhu, and X. Si, “A Survey on Challenges and Progresses in Blockchain Technologies: A Performance and Security Perspective,” Applied Sciences, vol. 9, no. 22, p. 4731, Nov. 2019, doi: 10.3390/app9224731.
R. Gangula, S. V. Thalla, I. Ikedum, C. Okpala, and S. Sneha, “Leveraging the Hyperledger Fabric for Enhancing the Efficacy of Clinical Decision Support Systems,” BHTY, Feb. 2021, doi: 10.30953/bhty.v4.154.
Y. G. Liu, Y. Duan, and Y. Zheng, “Blockchain-based label coverage storage query scheme,” in Third International Conference on Green Communication, Network, and Internet of Things (CNIoT 2023), S. Zhang and H. Wang, Eds., Chongqing, China: SPIE, Oct. 2023, p. 15. doi: 10.1117/12.3010265.
N. Deb, M. A. Elashiri, T. Veeramakali, A. W. Rahmani, and S. Degadwala, “A Metaheuristic Approach for Encrypting Blockchain Data Attributes Using Ciphertext Policy Technique,” Mathematical Problems in Engineering, vol. 2022, pp. 1–10, Feb. 2022, doi: 10.1155/2022/7579961.
A. Iftekhar, X. Cui, Q. Tao, and C. Zheng, “Hyperledger Fabric Access Control System for Internet of Things Layer in Blockchain-Based Applications,” Entropy, vol. 23, no. 8, p. 1054, Aug. 2021, doi: 10.3390/e23081054.
D. Khan, L. T. Jung, M. A. Hashmani, and M. K. Cheong, “Empirical Performance Analysis of Hyperledger LTS for Small and Medium Enterprises,” Sensors, vol. 22, no. 3, p. 915, Jan. 2022, doi: 10.3390/s22030915.
“Optimal Deployment of Energy Based on Blockchain,” RE, vol. 3, no. 1, Mar. 2022, doi: 10.38007/RE.2022.030104.
H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses,” ACM Comput. Surv., vol. 53, no. 3, pp. 1–43, May 2021, doi: 10.1145/3391195.
M. Saad et al., “Exploring the Attack Surface of Blockchain: A Comprehensive Survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1977–2008, 2020, doi: 10.1109/COMST.2020.2975999.
Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A Survey of Distributed Consensus Protocols for Blockchain Networks,” IEEE Commun. Surv. Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020, doi: 10.1109/COMST.2020.2969706.
K. Li et al., “PoV: An Efficient Voting-Based Consensus Algorithm for Consortium Blockchains,” Front. Blockchain, vol. 3, p. 11, Mar. 2020, doi: 10.3389/fbloc.2020.00011.
S. Rouhani and R. Deters, “Security, Performance, and Applications of Smart Contracts: A Systematic Survey,” IEEE Access, vol. 7, pp. 50759–50779, 2019, doi: 10.1109/ACCESS.2019.2911031.
M. Uddin, K. Salah, R. Jayaraman, S. Pesic, and S. Ellahham, “Blockchain for drug traceability: Architectures and open challenges,” Health Informatics J, vol. 27, no. 2, p. 14604582211011228, Apr. 2021, doi: 10.1177/14604582211011228.
R. W. Ahmad, K. Salah, R. Jayaraman, I. Yaqoob, S. Ellahham, and M. Omar, “The Role of Blockchain Technology in Telehealth and Telemedicine,” Sep. 19, 2020. doi: 10.36227/techrxiv.12967748.
M. Madine, K. Salah, R. Jayaraman, Y. Al-Hammadi, J. Arshad, and I. Yaqoob, “appXchain: Application-Level Interoperability for Blockchain Networks,” Jun. 21, 2021. doi: 10.36227/techrxiv.13903010.
S. Loss, H. P. Singh, N. Cacho, and F. Lopes, “Using FIWARE and blockchain in smart cities solutions,” Cluster Comput, vol. 26, no. 4, pp. 2115–2128, Aug. 2023, doi: 10.1007/s10586-022-03732-x.
C. Soto-Valero, M. Monperrus, and B. Baudry, “The Multibillion Dollar Software Supply Chain of Ethereum,” 2022, doi: 10.48550/ARXIV.2202.07029.
P. Thakkar, S. Nathan, and B. Viswanathan, “Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform,” in 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), Milwaukee, WI: IEEE, Sep. 2018, pp. 264–276. doi: 10.1109/MASCOTS.2018.00034.
Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif, “Performance Analysis of Hyperledger Fabric Platforms,” Security and Communication Networks, vol. 2018, pp. 1–14, Sep. 2018, doi: 10.1155/2018/3976093.
D. Wang, Y. Zhu, Y. Zhang, and G. Liu, “Security Assessment of Blockchain in Chinese Classified Protection of Cybersecurity,” IEEE Access, vol. 8, pp. 203440–203456, 2020, doi: 10.1109/ACCESS.2020.3036004.