Privacy-Preserving Techniques for IoT Data in 6G Networks with Blockchain Integration: A Review

Authors

  • Ahmad Anwar Zainuddin Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Nuraina Fitrah Omar Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Nurul Nadhirah Zakaria Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Nana Aichata Mbourou Camara Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.31436/ijpcc.v9i2.405

Keywords:

6G networks, Wireless network technology, Blockchain technology, Internet of Things (IoT), IoT networking, Security features, Data security, Privacy concerns, IoT blockchain applications, Networking systems, Supply chain, Management, Healthcare, Smart cities

Abstract

Sixth-generation networks (6G) are predicted to be started use by 2030, supporting the complex communication requirements of a data-centric civilisation where everything is interconnected. The research and academics started to analyse the 6G wireless network technology after the implementation of the 5G technology globally. The 6G networks will be more deliberate to extend cell communication and network capabilities to reach ultra-high-speed connectivity which could precede into the regions where the generation before could not. The new security features need to be advanced to guarantee the data is secure and protect the network from being invaded. The technology of blockchain and integration of the Internet of Things (IoT) has the prospect to revolutionize the networking system. This paper explores the applications of blockchain in IoT networking, addressing challenges such as security, scalability, and trust. Blockchain also enhances security, audibility, and traceability in IoT networks. Use cases in the supply chain, management, healthcare, and smart cities demonstrate the benefits of this integration. Challenges include scalability, energy consumption, interoperability, and privacy concerns. Future research should focus on addressing these challenges to fully exploit the potential of IoT blockchain applications in networking systems.

 

References

M. S. Ali, M. Vecchio, G. D. Putra, S. S. Kanhere, and F. Antonelli, “A Decentralized Peer-to-Peer Remote Health Monitoring System,” Sensors, vol. 20, no. 6, p. 1656, Mar. 2020, doi: 10.3390/s20061656.

H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A Survey on Space-Air-Ground-Sea Integrated Network Security in 6G,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 53–87, 2022, doi: 10.1109/COMST.2021.3131332.

L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus, and Traffic Modeling,” ACM Comput. Surv., vol. 53, no. 1, pp. 1–32, Jan. 2021, doi: 10.1145/3372136.

K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, and N. Kumar, “A taxonomy of AI techniques for 6G communication networks,” Comput. Commun., vol. 161, pp. 279–303, Sep. 2020, doi: 10.1016/j.comcom.2020.07.035.

M. H. Miraz and M. Ali, “Applications of Blockchain Technology beyond Cryptocurrency,” Ann. Emerg. Technol. Comput., vol. 2, no. 1, pp. 1–6, Jan. 2018, doi: 10.33166/AETiC.2018.01.001.

A. H. Khan et al., “Blockchain and 6G: The Future of Secure and Ubiquitous Communication,” IEEE Wirel. Commun., vol. 29, no. 1, pp. 194–201, Feb. 2022, doi: 10.1109/MWC.001.2100255.

D. Minoli and B. Occhiogrosso, “Blockchain mechanisms for IoT security,” Internet Things, vol. 1–2, pp. 1–13, Sep. 2018, doi: 10.1016/j.iot.2018.05.002.

S. N. Khan, F. Loukil, C. Ghedira-Guegan, E. Benkhelifa, and A. Bani-Hani, “Blockchain smart contracts: Applications, challenges, and future trends,” Peer--Peer Netw. Appl., vol. 14, no. 5, pp. 2901–2925, Sep. 2021, doi: 10.1007/s12083-021-01127-0.

I. Acharjamayum, R. Patgiri, and D. Devi, “Blockchain: A Tale of Peer to Peer Security,” in 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India: IEEE, Nov. 2018, pp. 609–617. doi: 10.1109/SSCI.2018.8628826.

N. Kshetri, “Can Blockchain Strengthen the Internet of Things?,” IT Prof., vol. 19, no. 4, pp. 68–72, 2017, doi: 10.1109/MITP.2017.3051335.

G. R. Carrara, L. M. Burle, D. S. V. Medeiros, C. V. N. De Albuquerque, and D. M. F. Mattos, “Consistency, availability, and partition tolerance in blockchain: a survey on the consensus mechanism over peer-to-peer networking,” Ann. Telecommun., vol. 75, no. 3–4, pp. 163–174, Apr. 2020, doi: 10.1007/s12243-020-00751-w.

S. Singh, P. K. Sharma, B. Yoon, M. Shojafar, G. H. Cho, and I.-H. Ra, “Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city,” Sustain. Cities Soc., vol. 63, p. 102364, Dec. 2020, doi: 10.1016/j.scs.2020.102364.

W. Sun, S. Li, and Y. Zhang, “Edge caching in blockchain empowered 6G,” China Commun., vol. 18, no. 1, pp. 1–17, Jan. 2021, doi: 10.23919/JCC.2021.01.001.

S. Yrjola, “How Could Blockchain Transform 6G towards Open Ecosystemic Business Models?,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland: IEEE, Jun. 2020, pp. 1–6. doi: 10.1109/ICCWorkshops49005.2020.9145223.

S. Munirathinam, “Industry 4.0: Industrial Internet of Things (IIOT),” in Advances in Computers, Elsevier, 2020, pp. 129–164. doi: 10.1016/bs.adcom.2019.10.010.

M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou, “Security and privacy in 6G networks: New areas and new challenges,” Digit. Commun. Netw., vol. 6, no. 3, pp. 281–291, Aug. 2020, doi: 10.1016/j.dcan.2020.07.003.

S. A. Abdel Hakeem, H. H. Hussein, and H. Kim, “Security Requirements and Challenges of 6G Technologies and Applications,” Sensors, vol. 22, no. 5, p. 1969, Mar. 2022, doi: 10.3390/s22051969.

T. Hewa, G. Gur, A. Kalla, M. Ylianttila, A. Bracken, and M. Liyanage, “The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland: IEEE, Mar. 2020, pp. 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083784.

C. De Alwis et al., “Towards 6G: Key technological directions,” ICT Express, p. S2405959522001485, Oct. 2022, doi: 10.1016/j.icte.2022.10.005.

P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G Wireless Communications: Vision and Potential Techniques,” IEEE Netw., vol. 33, no. 4, pp. 70–75, Jul. 2019, doi: 10.1109/MNET.2019.1800418.

G. Kirubasri, S. Sankar, D. Pandey, B. K. Pandey, H. Singh, and R. Anand, “A Recent Survey on 6G Vehicular Technology, Applications and Challenges,” in 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India: IEEE, Sep. 2021, pp. 1–5. doi: 10.1109/ICRITO51393.2021.9596147.

W. Li, Z. Su, R. Li, K. Zhang, and Y. Wang, “Blockchain-Based Data Security for Artificial Intelligence Applications in 6G Networks,” IEEE Netw., vol. 34, no. 6, pp. 31–37, Nov. 2020, doi: 10.1109/MNET.021.1900629.

H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,” IEEE Access, vol. 8, pp. 57063–57074, 2020, doi: 10.1109/ACCESS.2020.2981745.

S. Zhang, J. Liu, H. Guo, M. Qi, and N. Kato, “Envisioning Device-to-Device Communications in 6G,” IEEE Netw., vol. 34, no. 3, pp. 86–91, May 2020, doi: 10.1109/MNET.001.1900652.

N. M. Nasir, S. Hassan, and K. M. Zaini, “Evolution Towards 6G Intelligent Wireless Networks: The Motivations and Challenges on the Enabling Technologies,” in 2021 IEEE 19th Student Conference on Research and Development (SCOReD), Kota Kinabalu, Malaysia: IEEE, Nov. 2021, pp. 305–310. doi: 10.1109/SCOReD53546.2021.9652750.

T. Sharma, S. K. Prasad, and V. Sharma, “Research challenges of Blockchain in 6G Network,” in 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India: IEEE, Feb. 2022, pp. 1–7. doi: 10.1109/DELCON54057.2022.9753098.

M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G Networks: Use Cases and Technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020, doi: 10.1109/MCOM.001.1900411.

S. Chen, Y.-C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate and Movement Speed,” IEEE Wirel. Commun., vol. 27, no. 2, pp. 218–228, Apr. 2020, doi: 10.1109/MWC.001.1900333.

A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its integration with IoT. Challenges and opportunities,” Future Gener. Comput. Syst., vol. 88, pp. 173–190, Nov. 2018, doi: 10.1016/j.future.2018.05.046.

D. C. Nguyen et al., “6G Internet of Things: A Comprehensive Survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022, doi: 10.1109/JIOT.2021.3103320.

E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama, “A Survey of Blockchain-Based Strategies for Healthcare,” ACM Comput. Surv., vol. 53, no. 2, pp. 1–27, Mar. 2021, doi: 10.1145/3376915.

P. Singh, Z. Elmi, Y. Lau, M. Borowska-Stefa?ska, S. Wi?niewski, and M. A. Dulebenets, “Blockchain and AI technology convergence: Applications in transportation systems,” Veh. Commun., vol. 38, p. 100521, Dec. 2022, doi: 10.1016/j.vehcom.2022.100521.

S. Najjar-Ghabel, S. Yousefi, and H. Karimipour, “Blockchain Applications in the Industrial Internet of Things,” in AI-Enabled Threat Detection and Security Analysis for Industrial IoT, H. Karimipour and F. Derakhshan, Eds., Cham: Springer International Publishing, 2021, pp. 41–76. doi: 10.1007/978-3-030-76613-9_4.

A. S. Musleh, G. Yao, and S. M. Muyeen, “Blockchain Applications in Smart Grid–Review and Frameworks,” IEEE Access, vol. 7, pp. 86746–86757, 2019, doi: 10.1109/ACCESS.2019.2920682.

A. H. Mohsin et al., “Blockchain authentication of network applications: Taxonomy, classification, capabilities, open challenges, motivations, recommendations and future directions,” Comput. Stand. Interfaces, vol. 64, pp. 41–60, May 2019, doi: 10.1016/j.csi.2018.12.002.

T. R. Gadekallu et al., “Blockchain for Edge of Things: Applications, Opportunities, and Challenges,” IEEE Internet Things J., vol. 9, no. 2, pp. 964–988, Jan. 2022, doi: 10.1109/JIOT.2021.3119639.

R. Jayaraman, A. Srivastava, and M. Kumar, “Blockchain technology for protection of biomedical documents in healthcare society,” Int. J. Internet Technol. Secur. Trans., vol. 12, no. 6, p. 566, 2022, doi: 10.1504/IJITST.2022.126470.

M. Krichen, M. Ammi, A. Mihoub, and M. Almutiq, “Blockchain for Modern Applications: A Survey,” Sensors, vol. 22, no. 14, p. 5274, Jul. 2022, doi: 10.3390/s22145274.

G. Zhao et al., “Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions,” Comput. Ind., vol. 109, pp. 83–99, Aug. 2019, doi: 10.1016/j.compind.2019.04.002.

A. Hasankhani, S. Mehdi Hakimi, M. Bisheh-Niasar, M. Shafie-khah, and H. Asadolahi, “Blockchain technology in the future smart grids: A comprehensive review and frameworks,” Int. J. Electr. Power Energy Syst., vol. 129, p. 106811, Jul. 2021, doi: 10.1016/j.ijepes.2021.106811.

S. Al-Megren et al., “Blockchain Use Cases in Digital Sectors: A Review of the Literature,” in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada: IEEE, Jul. 2018, pp. 1417–1424. doi: 10.1109/Cybermatics_2018.2018.00242.

P. Bhattacharya et al., “Coalition of 6G and Blockchain in AR/VR Space: Challenges and Future Directions,” IEEE Access, vol. 9, pp. 168455–168484, 2021, doi: 10.1109/ACCESS.2021.3136860.

Y. Zuo, “Making smart manufacturing smarter – a survey on blockchain technology in Industry 4.0,” Enterp. Inf. Syst., vol. 15, no. 10, pp. 1323–1353, Nov. 2021, doi: 10.1080/17517575.2020.1856425.

M. U. Hassan, M. H. Rehmani, and J. Chen, “Privacy preservation in blockchain based IoT systems: Integration issues, prospects, challenges, and future research directions,” Future Gener. Comput. Syst., vol. 97, pp. 512–529, Aug. 2019, doi: 10.1016/j.future.2019.02.060.

B. Wan, C. Xu, R. P. Mahapatra, and P. Selvaraj, “Understanding the Cyber-Physical System in International Stadiums for Security in the Network from Cyber-Attacks and Adversaries using AI,” Wirel. Pers. Commun., vol. 127, no. 2, pp. 1207–1224, Nov. 2022, doi: 10.1007/s11277-021-08573-2.

A. Jahid, M. H. Alsharif, and T. J. Hall, “The convergence of blockchain, IoT and 6G: Potential, opportunities, challenges and research roadmap,” J. Netw. Comput. Appl., vol. 217, p. 103677, Aug. 2023, doi: 10.1016/j.jnca.2023.103677.

N. Etemadi, Y. Borbon-Galvez, F. Strozzi, and T. Etemadi, “Supply Chain Disruption Risk Management with Blockchain: A Dynamic Literature Review,” Information, vol. 12, no. 2, p. 70, Feb. 2021, doi: 10.3390/info12020070.

V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin, “Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges,” IEEE Commun. Surv. Tutor., vol. 23, no. 4, pp. 2384–2428, 2021, doi: 10.1109/COMST.2021.3108618.

Brookson, C. Gsm security: A description of the reasons for security and the techniques. In Proceedings of the IEE Colloquium on Security and Cryptography Applications to Radio Systems, London, UK, 3 June 1994; pp. 2/1–2/4. [Google Scholar]

Arapinis, M.; Mancini, L.I.; Ritter, E.; Ryan, M. Privacy through pseudonymity in mobile telephony systems. In Proceedings of the 2014 Network and Distributed System Security Symposium, San Diego, CA, USA, 23–26 February 2014. [Google Scholar]

Karjaluoto, H. An investigation of third Generation (3g) mobile technologies and services. Contemp. Manag. Res. 2007, 2, 91. [Google Scholar] [CrossRef]

Saxena, N.; Chaudhari, N.S. Secure-aka: An efficient aka protocol for umts networks. Wirel. Pers. Commun. 2014, 78, 1345–1373. [Google Scholar] [CrossRef]

Jefferies, N. Security in Third-Generation mobile systems. In Proceedings of the IEE Colloquium on Security in Networks, London, UK, 3 February 1995. [Google Scholar]

La Porta, T.F. Security and IP-based 3G wireless networks. In Proceedings of the 14th International Conference on Computer Communications and Networks, San Diego, CA, USA, 17–19 October 2005; p. 211. [Google Scholar]

Zahariadis, T.; Kazakos, D. (R)evolution toward 4G mobile communication systems. IEEE Wirel. Commun. 2003, 10, 6–7. [Google Scholar] [CrossRef]

Bikos, A.N.; Sklavos, N. LTE/SAE security issues on 4G wireless networks. IEEE Secur. Priv. 2013, 11, 55–62. [Google Scholar] [CrossRef]

Park, Y.; Park, T. A survey of security threats on 4G networks. In Proceedings of the 2007 IEEE Globecom Workshops, Washington, DC, USA, 26–30 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–6. [Google Scholar]

Goyal, P.; Batra, S.; Singh, A. A literature review of security attack in mobile ad-hoc networks. Int. J. Comput. Appl. 2010, 9, 11–15. [Google Scholar] [CrossRef]

Kim, S.J.; Lee, H.; Lee, M. A Study of 4G Network for Security System. Int. J. Adv. Cult. Technol. 2015, 3, 77–86. [Google Scholar] [CrossRef][Green Version]

Mohapatra, S.K.; Swain, B.R.; Das, P. Comprehensive survey of possible security issues on 4G networks. Int. J. Netw. Secur. Its Appl. 2015, 7, 61–69. [Google Scholar] [CrossRef]

Panwar, N.; Sharma, S.; Singh, A.K. A survey on 5G: The next generation of mobile communication. Phys. Commun. 2016, 18, 64–84. [Google Scholar] [CrossRef][Green Version]

Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A survey on 5G networks for the internet of things: Communication technologies and challenges. IEEE Access 2018, 6, 3619–3647. [Google Scholar] [CrossRef]

Wang, C.-X.; Haider, F.; Gao, X.; You, X.-H.; Yang, Y.; Yuan, D.; Aggoune, H.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef][Green Version]

Thompson, J.; Ge, X.; Wu, H.-C.; Irmer, R.; Jiang, H.; Fettweis, G.; Alamouti, S. 5G wireless communication Systems: Prospects and challenges. IEEE Commun. Mag. 2014, 52, 62–64. [Google Scholar] [CrossRef]

Soldani, D.; Innocenti, M. 5G communication systems and Connected healthcare. In Enabling 5G Communication Systems to Support Vertical Industries; Wiley: New York, NY, USA, 2019; pp. 149–177. [Google Scholar]

Liu, G.; Jiang, D. 5G: Vision and requirements for mobile communication system towards year 2020. Chin. J. Eng. 2016, 2016, 8. [Google Scholar] [CrossRef][Green Version]

Mahmoodi, T. 5G and Software-Defined Networking (SDN). In Proceedings of the 5G Radio Technology Seminar. Exploring Technical Challenges in the Emerging 5G Ecosystem, London, UK, 17 March 2015. [Google Scholar]

Sridharan, S. A literature review of network function Virtualization (NFV) in 5G networks. Int. J. Comput. Trends Technol. 2020, 68, 49–55. [Google Scholar] [CrossRef]

Hakeem, S.A.; Hady, A.A.; Kim, H.W. 5G-V2X: Standardization, architecture, use cases, network-slicing, and edge-computing. Wirel. Netw. 2020, 26, 6015–6041. [Google Scholar] [CrossRef]

Mavoungou, S.; Kaddoum, G.; Taha, M.; Matar, G. Survey on threats and attacks on mobile networks. IEEE Access 2016, 4, 4543–4572. [Google Scholar] [CrossRef]

Pawlicki, M.; Choras, M.; Kozik, R. Defending network intrusion detection systems against adversarial evasion attacks. Future Gener. Comput. Syst. 2020, 110, 148–154. [Google Scholar] [CrossRef]

ETSI ISG ZSM, ETSI GS ZSM 002: ZSM Reference Architecture. 2019. Available online: https://www.etsi.org/deliver/etsigs/ZSM/001099/002/01.01.0160/gsZSM002v010101p.pdf (accessed on 11 January 2022).

Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6g Networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]

Downloads

Published

2023-07-28

How to Cite

Zainuddin, A. A. ., Omar , N. F., Zakaria , N. N., & Mbourou Camara , N. A. (2023). Privacy-Preserving Techniques for IoT Data in 6G Networks with Blockchain Integration: A Review. International Journal on Perceptive and Cognitive Computing, 9(2), 80–92. https://doi.org/10.31436/ijpcc.v9i2.405

Issue

Section

Articles

Most read articles by the same author(s)