Analyses of 6G-Network and Blockchain-Network Application Security: Future Research Prospect
DOI:
https://doi.org/10.31436/ijpcc.v10i2.478Keywords:
5G,6G,IoT, MEC and RANAbstract
The evolution from 5G to 6G signifies a monumental progression in wireless communication technology, promising enhanced capabilities and broader applications. Building on the transformative impact of 5G with its high speeds, low latency, and improved connectivity, the transition to 6G aims to overcome the limitations of its predecessor and unlock new potentials. However, this shift is not devoid of challenges, particularly concerning the privacy and security risks inherent in the adoption of 6G networks. Reflecting on the historical trajectory of wireless technologies, from the first 0G to the current 5G networks, each generational leap has brought significant enhancements in design, coverage, speed, quality of service, capacity, and latency rates. The ongoing deployment of 5G is expected to further expand network capacity through innovative architectural advancements, such as the convergence of information and communication technologies and the implementation of heterogeneous networks. These advancements are essential in optimizing energy consumption, enhancing overall performance, and ensuring the sustainability of wireless networks. Furthermore, the convergence of emerging technologies like the Internet of Things (IoT), energy harvesting, and Simultaneous Wireless Information and Power Transfer (SWIPT) is reshaping the landscape of wireless communication. These technologies not only facilitate the deployment of numerous low-power radios but also pave the way for a more interconnected and efficient wireless ecosystem. In this dynamic world of evolving wireless technologies, the concept of mobile edge computing (MEC) emerges as a novel paradigm for providing computing, storage, and networking resources at the edge of mobile networks. By allowing latency-sensitive and context-aware applications near end-users, MEC ensures efficient operations without compromising performance. This integration of edge computing within the Radio Access Network (RAN) architecture signifies a theoretical shift towards more distributed and responsive network infrastructures.
.
References
A. Nasrallah et al., “Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research,” IEEE Commun. Surv. Tutor., vol. 21, no. 1, pp. 88–145, 2019, doi: 10.1109/COMST.2018.2869350.
M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou, “Security and privacy in 6G networks: New areas and new challenges,” Digit. Commun. Netw., vol. 6, no. 3, pp. 281–291, Aug. 2020, doi: 10.1016/j.dcan.2020.07.003.
A. Nieto, A. Acien, and G. Fernandez, “Crowdsourcing Analysis in 5G IoT: Cybersecurity Threats and Mitigation,” Mob. Netw. Appl., vol. 24, no. 3, pp. 881–889, Jun. 2019, doi: 10.1007/s11036-018-1146-4.
H. Saarnisaari et al., “A 6G White Paper on Connectivity for Remote Areas.” arXiv, Apr. 30, 2020. doi: 10.48550/arXiv.2004.14699.
P. P. Ray, “A perspective on 6G: Requirement, technology, enablers, challenges and future road map,” J. Syst. Archit., vol. 118, p. 102180, Sep. 2021, doi: 10.1016/j.sysarc.2021.102180.
R. Agrawal, “Comparison of Different Mobile Wireless Technology (From 0G to 6G),” ECS Trans., vol. 107, no. 1, p. 4799, Apr. 2022, doi: 10.1149/10701.4799ecst.
P. K. Agyapong, M. Iwamura, D. Staehle, W. Kiess, and A. Benjebbour, “Design considerations for a 5G network architecture,” IEEE Commun. Mag., vol. 52, no. 11, pp. 65–75, Nov. 2014, doi: 10.1109/MCOM.2014.6957145.
A. Gupta and R. K. Jha, “A Survey of 5G Network: Architecture and Emerging Technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015, doi: 10.1109/ACCESS.2015.2461602.
A. S. Avestimehr, S. N. Diggavi, and D. N. C. Tse, “Wireless Network Information Flow: A Deterministic Approach,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 1872–1905, Apr. 2011, doi: 10.1109/TIT.2011.2110110.
Z. Zhu et al., “Secrecy Rate Optimization in Nonlinear Energy Harvesting Model-Based mmWave IoT Systems With SWIPT,” IEEE Syst. J., vol. 16, no. 4, pp. 5939–5949, Dec. 2022, doi: 10.1109/JSYST.2022.3147889.
D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, Oct. 2016, doi: 10.1109/MCE.2016.2590118.
“MEC Deployments in 4G and Evolution Towards 5G”.
L. M. Contreras et al., “Hewlett Packard Enterprise”.
M. Patel, D. Sabella, N. Sprecher, and V. Young, “Contributor, Huawei, Vice Chair ETSI MEC ISG, Chair MEC IEG Working Group”.
J. Gante, L. Sousa, and G. Falcao, “Dethroning GPS: Low-Power Accurate 5G Positioning Systems Using Machine Learning,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 10, no. 2, pp. 240–252, Jun. 2020, doi: 10.1109/JETCAS.2020.2991024.
N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge Computing: A Survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018, doi: 10.1109/JIOT.2017.2750180.
Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “AI and 6G Security: Opportunities and Challenges,” in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Jun. 2021, pp. 616–621. doi: 10.1109/EuCNC/6GSummit51104.2021.9482503.
N. Kato, B. Mao, F. Tang, Y. Kawamoto, and J. Liu, “Ten Challenges in Advancing Machine Learning Technologies toward 6G,” IEEE Wirel. Commun., vol. 27, no. 3, pp. 96–103, Jun. 2020, doi: 10.1109/MWC.001.1900476.
T. Aslanidis and L. Tsepenekas, “Message Routing in Wireless and Mobile Networks using TDMA Technology.” arXiv, Jul. 03, 2016. doi: 10.48550/arXiv.1607.00604.
B. Zhang, “Cryptanalysis of GSM Encryption in 2G/3G Networks Without Rainbow Tables,” in Advances in Cryptology – ASIACRYPT 2019, S. D. Galbraith and S. Moriai, Eds., in Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019, pp. 428–456. doi: 10.1007/978-3-030-34618-8_15.
S. F. Mjolsnes and R. F. Olimid, “Private Identification of Subscribers in Mobile Networks: Status and Challenges,” IEEE Commun. Mag., vol. 57, no. 9, pp. 138–144, Sep. 2019, doi: 10.1109/MCOM.2019.1800511.
P. Gope and T. Hwang, “An efficient mutual authentication and key agreement scheme preserving strong anonymity of the mobile user in global mobility networks,” J. Netw. Comput. Appl., vol. 62, pp. 1–8, Feb. 2016, doi: 10.1016/j.jnca.2015.12.003.
S. Faruque, “Time Division Multiple Access (TDMA),” in Radio Frequency Multiple Access Techniques Made Easy, in SpringerBriefs in Electrical and Computer Engineering. , Cham: Springer International Publishing, 2019, pp. 35–43. doi: 10.1007/978-3-319-91651-4_4.
K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner, “On Ends-to-Ends Encryption: Asynchronous Group Messaging with Strong Security Guarantees,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, in CCS ’18. New York, NY, USA: Association for Computing Machinery, Oct. 2018, pp. 1802–1819. doi: 10.1145/3243734.3243747.
N. Niebert et al., “Ambient networks: an architecture for communication networks beyond 3G,” IEEE Wirel. Commun., vol. 11, no. 2, pp. 14–22, Apr. 2004, doi: 10.1109/MWC.2004.1295733.
X. Liu, A. Sridharan, S. Machiraju, M. Seshadri, and H. Zang, “Experiences in a 3G network: interplay between the wireless channel and applications,” in Proceedings of the 14th ACM international conference on Mobile computing and networking, in MobiCom ’08. New York, NY, USA: Association for Computing Machinery, Sep. 2008, pp. 211–222. doi: 10.1145/1409944.1409969.
S. Putz and R. Schmitz, “Secure interoperation between 2G and 3G mobile radio networks,” pp. 28–32, Jan. 2000, doi: 10.1049/cp:20000007.
C. B. Sankaran, “Network access security in next- generation 3GPP systems: A tutorial,” IEEE Commun. Mag., vol. 47, no. 2, pp. 84–91, Feb. 2009, doi: 10.1109/MCOM.2009.4785384.
M. Zhang and Y. Fang, “Security analysis and enhancements of 3GPP authentication and key agreement protocol,” IEEE Trans. Wirel. Commun., vol. 4, no. 2, pp. 734–742, Mar. 2005, doi: 10.1109/TWC.2004.842941.
S. Frattasi, H. Fathi, F. H. P. Fitzek, R. Prasad, and M. D. Katz, “Defining 4G technology from the users perspective,” IEEE Netw., vol. 20, no. 1, pp. 35–41, Jan. 2006, doi: 10.1109/MNET.2006.1580917.
H.-S. Liu, C.-H. Wang, and R.-I. Chang, “The design and implementation of a future Internet live TV system over 4G networks,” Telecommun. Syst., vol. 54, no. 3, pp. 203–214, Nov. 2013, doi: 10.1007/s11235-013-9728-8.
Y. Park and T. Park, “A Survey of Security Threats on 4G Networks,” in 2007 IEEE Globecom Workshops, Nov. 2007, pp. 1–6. doi: 10.1109/GLOCOMW.2007.4437813.
A. Singla, S. R. Hussain, O. Chowdhury, E. Bertino, and N. Li, “Protecting the 4G and 5G Cellular Paging Protocols against Security and Privacy Attacks,” Proc. Priv. Enhancing Technol., vol. 2020, no. 1, Jan. 2020, doi: 10.2478/popets-2020-0008.
M. A. Imran, Y. Abdulrahman Sambo, and Q. H. Abbasi, Enabling 5G Communication Systems to Support Vertical Industries, 1st ed. Wiley, 2019. doi: 10.1002/9781119515579.
T. Sato, “Modeling and Simulation on Securing of Software Defined Network Overlays,” Int. J. Intell. Inf. Syst., vol. 8, no. 4, p. 65, 2019, doi: 10.11648/j.ijiis.20190804.11.
A. A. Ajani, V. K. Oduol, and Z. K. Adeyemo, “GPON and V-band mmWave in green backhaul solution for 5G ultra-dense network,” Int. J. Electr. Comput. Eng. IJECE, vol. 11, no. 1, p. 390, Feb. 2021, doi: 10.11591/ijece.v11i1.pp390-401.
D. P., M. Karuppiah, S. H. Islam, and M. S. Obaidat (Fellow Of Ieee And Fellow Of Scs), “Secure cognitive radio?based synchronized transmission of 5G signals using massive MIMO?OFDM?ES,” Int. J. Commun. Syst., vol. 31, no. 17, p. e3805, Nov. 2018, doi: 10.1002/dac.3805.
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration,” IEEE Commun. Surv. Tutor., vol. 19, no. 3, pp. 1657–1681, 2017, doi: 10.1109/COMST.2017.2705720.
S. Sridharan, “A Literature Review of Network Function Virtualization (NFV) in 5G Networks,” Int. J. Comput. Trends Technol., vol. 68, no. 10, pp. 49–55, Oct. 2020, doi: 10.14445/22312803/IJCTT-V68I10P109.
S. A. Abdel Hakeem, A. A. Hady, and H. Kim, “5G-V2X: standardization, architecture, use cases, network-slicing, and edge-computing,” Wirel. Netw., vol. 26, no. 8, pp. 6015–6041, Nov. 2020, doi: 10.1007/s11276-020-02419-8.
S. A. Abdel Hakeem, A. A. Hady, and H. Kim, “Current and future developments to improve 5G-NewRadio performance in vehicle-to-everything communications,” Telecommun. Syst., vol. 75, no. 3, pp. 331–353, Nov. 2020, doi: 10.1007/s11235-020-00704-7.
W. Mazurczyk, P. Bisson, R. P. Jover, K. Nakao, and K. Cabaj, “Challenges and Novel Solutions for 5G Network Security, Privacy and Trust,” IEEE Wirel. Commun., vol. 27, no. 4, pp. 6–7, Aug. 2020, doi: 10.1109/MWC.2020.9170261.
J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J. Ramos-Munoz, and J. M. Lopez-Soler, “A Survey on 5G Usage Scenarios and Traffic Models,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 905–929, 2020, doi: 10.1109/COMST.2020.2971781.
S. A. Abdel Hakeem, H. H. Hussein, and H. Kim, “Security Requirements and Challenges of 6G Technologies and Applications,” Sensors, vol. 22, no. 5, p. 1969, Mar. 2022, doi: 10.3390/s22051969.
D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler, “A Formal Analysis of 5G Authentication,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto Canada: ACM, Oct. 2018, pp. 1383–1396. doi: 10.1145/3243734.3243846.
M. C. Chow and M. Ma, “A Secure Blockchain-Based Authentication and Key Agreement Scheme for 3GPP 5G Networks,” Sensors, vol. 22, no. 12, p. 4525, Jun. 2022, doi: 10.3390/s22124525.
A. C. Jiménez and J. P. Martínez, “Remote Patient Monitoring Systems with 5G Networks,” Adv. Sci. Technol. Eng. Syst. J., vol. 6, no. 4, pp. 44–51, Jul. 2021, doi: 10.25046/aj060406.
R. Borgaonkar, L. Hirschi, S. Park, and A. Shaik, “New Privacy Threat on 3G, 4G, and Upcoming 5G AKA Protocols,” Proc. Priv. Enhancing Technol., vol. 2019, no. 3, pp. 108–127, Jul. 2019, doi: 10.2478/popets-2019-0039.
H. H. Hussein, H. A. Elsayed, and S. M. Abd El-kader, “Intensive Benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications,” Wirel. Netw., vol. 26, no. 5, pp. 3183–3202, Jul. 2020, doi: 10.1007/s11276-019-02131-2.
S. R. Hussain, M. Echeverria, O. Chowdhury, N. Li, and E. Bertino, “Privacy Attacks to the 4G and 5G Cellular Paging Protocols Using Side Channel Information,” in Proceedings 2019 Network and Distributed System Security Symposium, San Diego, CA: Internet Society, 2019. doi: 10.14722/ndss.2019.23442.
[51] M. Pawlicki, M. Chora?, and R. Kozik, “Defending network intrusion detection systems against adversarial evasion attacks,” Future Gener. Comput. Syst., vol. 110, pp. 148–154, Sep. 2020, doi: 10.1016/j.future.2020.04.013.
[52] W. Saad, M. Bennis, and M. Chen, “A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May 2020, doi: 10.1109/MNET.001.1900287.
[53] P. Porambage, G. Gur, D. P. M. Osorio, M. Liyanage, A. Gurtov, and M. Ylianttila, “The Roadmap to 6G Security and Privacy,” IEEE Open J. Commun. Soc., vol. 2, pp. 1094–1122, 2021, doi: 10.1109/OJCOMS.2021.3078081.
[54] P. Padhi and F. Charrua-Santos, “6G Enabled Industrial Internet of Everything: Towards a Theoretical Framework,” Appl. Syst. Innov., vol. 4, no. 1, p. 11, Feb. 2021, doi: 10.3390/asi4010011.
[55] C. Benzaid and T. Taleb, “ZSM Security: Threat Surface and Best Practices,” IEEE Netw., vol. 34, no. 3, pp. 124–133, May 2020, doi: 10.1109/MNET.001.1900273.
[56] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G Networks: Use Cases and Technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020, doi: 10.1109/MCOM.001.1900411.
[57] ??, ???, ???, ??, ???, and ???, “Built-in security framework research for 6G network,” Sci. Sin. Informationis, vol. 52, no. 2, p. 205, Jan. 2022, doi: 10.1360/SSI-2021-0257.
[58] M. A. Uusitalo et al., “Hexa-X The European 6G flagship project,” Jun. 2021, doi: 10.5281/ZENODO.5070052.
[59] G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence,” IEEE Wirel. Commun., vol. 27, no. 5, pp. 126–132, Oct. 2020, doi: 10.1109/MWC.001.1900516.
[60] F. Tariq, M. R. A. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and M. Debbah, “A Speculative Study on 6G,” IEEE Wirel. Commun., vol. 27, no. 4, pp. 118–125, Aug. 2020, doi: 10.1109/MWC.001.1900488.
[61] W. Tang et al., “Wireless Communications With Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement,” IEEE Trans. Wirel. Commun., vol. 20, no. 1, pp. 421–439, Jan. 2021, doi: 10.1109/TWC.2020.3024887.
[62] S. Basharat, S. A. Hassan, H. Pervaiz, A. Mahmood, Z. Ding, and M. Gidlund, “Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks,” IEEE Wirel. Commun., vol. 28, no. 6, pp. 184–191, Dec. 2021, doi: 10.1109/MWC.011.2100016.
[63] D. Kitayama, Y. Hama, K. Goto, K. Miyachi, T. Motegi, and O. Kagaya, “Transparent dynamic metasurface for a visually unaffected reconfigurable intelligent surface: controlling transmission/reflection and making a window into an RF lens,” Opt. Express, vol. 29, no. 18, p. 29292, Aug. 2021, doi: 10.1364/OE.435648.
[64] A. Dogra, R. K. Jha, and S. Jain, “A Survey on Beyond 5G Network With the Advent of 6G: Architecture and Emerging Technologies,” IEEE Access, vol. 9, pp. 67512–67547, 2021, doi: 10.1109/ACCESS.2020.3031234.
[65] M. Z. Chowdhury, Md. Shahjalal, S. Ahmed, and Y. M. Jang, “6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–975, 2020, doi: 10.1109/OJCOMS.2020.3010270.
[66] E. C. Strinati et al., “Reconfigurable, Intelligent, and Sustainable Wireless Environments for 6G Smart Connectivity,” IEEE Commun. Mag., vol. 59, no. 10, pp. 99–105, Oct. 2021, doi: 10.1109/MCOM.001.2100070.
[67] X. Fang, W. Feng, T. Wei, Y. Chen, N. Ge, and C.-X. Wang, “5G Embraces Satellites for 6G Ubiquitous IoT: Basic Models for Integrated Satellite Terrestrial Networks,” IEEE Internet Things J., vol. 8, no. 18, pp. 14399–14417, Sep. 2021, doi: 10.1109/JIOT.2021.3068596.
[68] D. Je, J. Jung, and S. Choi, “Toward 6G Security: Technology Trends, Threats, and Solutions,” IEEE Commun. Stand. Mag., vol. 5, no. 3, pp. 64–71, Sep. 2021, doi: 10.1109/MCOMSTD.011.2000065.
[69] A. Agache et al., “Firecracker: Lightweight Virtualization for Serverless Applications,” in Proceedings of the 17th Usenix Conference on Networked Systems Design and Implementation, in NSDI’20. USA: USENIX Association, 2020, pp. 419–434.
[70] B. Borisaniya and D. Patel, “Towards virtual machine introspection based security framework for cloud,” S?dhan?, vol. 44, no. 2, p. 34, Feb. 2019, doi: 10.1007/s12046-018-1016-6.
[71] N. R. Sai, G. S. C. Kumar, M. A. Safali, and B. S. Chandana, “Detection System for the Network Data Security with a profound Deep learning approach,” in 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India: IEEE, Jul. 2021, pp. 1026–1031. doi: 10.1109/ICCES51350.2021.9488967.
[72] S. Ribeiro-Navarrete, J. R. Saura, and D. Palacios-Marqués, “Towards a new era of mass data collection: Assessing pandemic surveillance technologies to preserve user privacy,” Technol. Forecast. Soc. Change, vol. 167, p. 120681, Jun. 2021, doi: 10.1016/j.techfore.2021.120681.
[73] D. Ott, C. Peikert, and other workshop participants, “Identifying Research Challenges in Post Quantum Cryptography Migration and Cryptographic Agility,” 2019, doi: 10.48550/ARXIV.1909.07353.
[74] J. T. J. Penttinen, “On 6G Visions and Requirements,” J. ICT Stand., Dec. 2021, doi: 10.13052/jicts2245-800X.931.
[75] K. B. Letaief, Y. Shi, J. Lu, and J. Lu, “Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications,” IEEE J. Sel. Areas Commun., vol. 40, no. 1, pp. 5–36, Jan. 2022, doi: 10.1109/JSAC.2021.3126076.
[76] V. Ziegler, P. Schneider, H. Viswanathan, M. Montag, S. Kanugovi, and A. Rezaki, “Security and Trust in the 6G Era,” IEEE Access, vol. 9, pp. 142314–142327, 2021, doi: 10.1109/ACCESS.2021.3120143.
[77] R. P. Jover, “The current state of affairs in 5G security and the main remaining security challenges,” 2019, doi: 10.48550/ARXIV.1904.08394.
[78] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The Road Towards 6G: A Comprehensive Survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334–366, 2021, doi: 10.1109/OJCOMS.2021.3057679.
[79] W. Long, R. Chen, M. Moretti, W. Zhang, and J. Li, “A Promising Technology for 6G Wireless Networks: Intelligent Reflecting Surface,” J. Commun. Inf. Netw., vol. 6, no. 1, pp. 1–16, Mar. 2021, doi: 10.23919/JCIN.2021.9387701.
[80] S. Xu, C. Liu, H. Wang, M. Qian, and J. Li, “STAR?RIS?assisted scheme for enhancing physical layer security in NOMA systems,” IET Commun., vol. 16, no. 19, pp. 2328–2342, Dec. 2022, doi: 10.1049/cmu2.12486.
[81] Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent Reflecting Surface Meets OFDM: Protocol Design and Rate Maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020, doi: 10.1109/TCOMM.2020.2981458.
[82] N. Wang, W. Li, A. Alipour-Fanid, L. Jiao, M. Dabaghchian, and K. Zeng, “Pilot Contamination Attack Detection for 5G MmWave Grant-Free IoT Networks,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 658–670, 2021, doi: 10.1109/TIFS.2020.3017932.
[83] M. Ylianttila et al., “6G White paper: Research challenges for Trust, Security and Privacy,” 2020, doi: 10.48550/ARXIV.2004.11665.
[84] L. Bariah et al., “A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks,” IEEE Access, vol. 8, pp. 174792–174820, 2020, doi: 10.1109/ACCESS.2020.3019590.
[85] R. Alghamdi et al., “Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques,” IEEE Access, vol. 8, pp. 202795–202818, 2020, doi: 10.1109/ACCESS.2020.3031959.
J. Tang, L. Chen, H. Wen, X. Xu, H. SONG, and K. Qin, “Physical layer secure communication against an eavesdropper with arbitrary number of eavesdropping antennas,” US 11,483,704 B2 [Online]. Available: https://patents.google.com/patent/US11483704B2/en
Y. Arjoune and S. Faruque, “Smart Jamming Attacks in 5G New Radio: A Review,” in 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA: IEEE, Jan. 2020, pp. 1010–1015. doi: 10.1109/CCWC47524.2020.9031175.
Q. Wang, X. Zhu, Y. Ni, L. Gu, and H. Zhu, “Blockchain for the IoT and industrial IoT: A review,” Internet Things, vol. 10, p. 100081, Jun. 2020, doi: 10.1016/j.iot.2019.100081.
L. Ghiro et al., “What is a Blockchain? A Definition to Clarify the Role of the Blockchain in the Internet of Things.” arXiv, Feb. 07, 2021. Accessed: Sep. 01, 2023. [Online]. Available: http://arxiv.org/abs/2102.03750
L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A Survey of IoT Applications in Blockchain Systems: Architecture, Consensus, and Traffic Modeling,” ACM Comput. Surv., vol. 53, no. 1, pp. 1–32, Jan. 2021, doi: 10.1145/3372136.
Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. M. Leung, “Blockchain and Machine Learning for Communications and Networking Systems,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 1392–1431, 2020, doi: 10.1109/COMST.2020.2975911.
Z. Ding, S. Liu, M. Li, Z. Lian, and H. Xu, “A Blockchain-Enabled Multiple Object Tracking for Unmanned System With Deep Hash Appearance Feature,” IEEE Access, vol. 9, pp. 1116–1123, 2021, doi: 10.1109/ACCESS.2020.3046243.
T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security Services Using Blockchains: A State of the Art Survey,” IEEE Commun. Surv. Tutor., vol. 21, no. 1, pp. 858–880, 2019, doi: 10.1109/COMST.2018.2863956.
B. Cao et al., “Blockchain Systems, Technologies, and Applications: A Methodology Perspective,” IEEE Commun. Surv. Tutor., vol. 25, no. 1, pp. 353–385, 2023, doi: 10.1109/COMST.2022.3204702.
G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey: Sharding in Blockchains,” IEEE Access, vol. 8, pp. 14155–14181, 2020, doi: 10.1109/ACCESS.2020.2965147.
H. Jebamikyous, M. Li, Y. Suhas, and R. Kashef, “Leveraging machine learning and blockchain in E-commerce and beyond: benefits, models, and application,” Discov. Artif. Intell., vol. 3, no. 1, p. 3, Jan. 2023, doi: 10.1007/s44163-022-00046-0.
A. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A Decentralized Privacy-Preserving Healthcare Blockchain for IoT,” Sensors, vol. 19, no. 2, p. 326, Jan. 2019, doi: 10.3390/s19020326.
H. Srikanth Kamath, A. Bhandari, S. Shekhar, and S. Ghosh, “A Survey on Enabling Technologies and Recent Advancements in 6G Communication,” J. Phys. Conf. Ser., vol. 2466, no. 1, p. 012005, Mar. 2023, doi: 10.1088/1742-6596/2466/1/012005.
[T. Hewa, G. Gur, A. Kalla, M. Ylianttila, A. Bracken, and M. Liyanage, “The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions,” in 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland: IEEE, Mar. 2020, pp. 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083784.
J. Wang, X. Ling, Y. Le, Y. Huang, and X. You, “Blockchain-enabled wireless communications: a new paradigm towards 6G,” Natl. Sci. Rev., vol. 8, no. 9, p. nwab069, Sep. 2021, doi: 10.1093/nsr/nwab069.
T. Noreen, Q. Xia, and M. Zeeshan Haider, “Advanced DAG-Based Ranking (ADR) Protocol for Blockchain Scalability,” Comput. Mater. Contin., vol. 75, no. 2, pp. 2593–2613, 2023, doi: 10.32604/cmc.2023.036139.
[M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani, “Applications of Blockchains in the Internet of Things: A Comprehensive Survey,” IEEE Commun. Surv. Tutor., vol. 21, no. 2, pp. 1676–1717, 2019, doi: 10.1109/COMST.2018.2886932.