A REVIEW ON ROSMARINIC ACID RICH EXTRACT FOR SKIN REGENERATION THROUGH RAPAMYCIN SIGNALING PATHWAY

Authors

  • Rosnani Hasham Universiti Teknologi Malaysia
  • Nagainthini Maniarasu Department of Bioprocess and Polymer Engineering, Universti Teknologi Malaysia
  • Khairunadwa Jemon Department of Biological Sciences, Faculty of Science, Universiti Teknologi Malaysia.
  • Nurriza Abd Latif Department of Biological Sciences, Faculty of Science, Universiti Teknologi Malaysia.
  • Hasnah Bahari Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia.

DOI:

https://doi.org/10.31436/cnrej.v7i1.85

Keywords:

Rosmarinic acid, Orthosiphon aristatus, wound healing, anti-aging, PI3K/Akt/mTOR signalling pathway

Abstract

Rosmarinic acid is a phenolic compound procured from the species of the Boraginaceae and the Lamiaceae subfamily Nepetoideae. Rosmarinic acid has numeral of biologically stimulating properties. Rosmarinic acid is a chemical constituent which is a major compound found in Orthosiphon aristatus leaves and it is about 5-10% w/w in the ethanolic extract of the leaves. The skin is the largest organ of a human body and it is frequently impacted by a variety of environmental conditions, such as skin infections, skin oxidation, wounds, UV radiation exposure and skin aging. In both physiological and pathological conditions, the phosphatidylinositol 3-kinase (PI3K) / protein kinase B (AKT) enzyme aids in the preservation and repair of the epidermis, dermis, and hair follicles layer of the skin. PI3K/Akt manages cell proliferation, differentiation, migration as well as angiogenesis and metabolism. This review paper compiles, summarizes and considers on skin regenerative and wound healing.

Downloads

Download data is not yet available.

References

Ahmed S, Anuntiyo J, Malemud CJ, Haqqi TM. (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complementary Altern Med, 2(3):301-308. https://doi.org/10.1093/ecam/neh117

Scarpati ML, Oriente G. (1958) Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off.). Ric Sci, 28:2329-2333.

Litvinenko VI, Popova TP, Simonjan IG, Sokolov VS. (1975) "Gerbstoffe" und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med, 27:372-380.

Takeda R, Hasegawa J, Sinozaki M. (1990) The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, Anthocerotae (hornworts). Tetrahedron Lett, 31:4159-4162. https://doi.org/10.1016/S0040-4039(00)97569-5

Ravn H, Pedersen MF, Andray J, Borum C, Anthoni U, Christophersen C, Nielsen PH. Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia, 1994; 40:51-61. https://doi.org/10.1080/00785326.1994.10429550

Moradkhani H, Sargsyan E, Bibak H, Naseri B, Sadat-Hosseini M, Fayazi-Barjin A, Meftahizade H. (2010) Melissa officinalis L., a valuable medicine plant: A review. J Med Plants Res, 4:2753-2759

Satake T, Kamiya K, Saiki Y, Hama T, Fujimoto Y, Kitanaka S, Kimura Y, Uzawa J, Endang H, Umar M. (1999) Studies on the constituents of fruits of Helicteres isora L. Chem Pharm Bull, 47:1444–1447.

Tanaka T, Morimoto S, Nonaka G, Nishioka I, Yokozawa T, Chung HY, Oura H. (1989) Magnesium and ammonium-potassium lithospermates B, the active principles having a uremia-preventive effect from Salvia miltiorrhiza. Chem Pharm Bull, 37:340– 344.

Petersen M, Simmonds MS. (2003) Rosmarinic acid. Phytochemistry, 62:121–125. https://doi.org/10.1016/S0031-9422(02)00513-7

Ito N, Hirose M. (1989) Antioxidants-carcinogenic and chemopreventive properties. Adv cancer res, 53:247-302. https://doi.org/10.1016/s0065-230x(08)60283-3

Messeha SS, Zarmouh NO, Asiri A, Soliman KFA. (2020) Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol, 885:173419. https://doi.org/10.1016/j.ejphar.2020.173419

Osakabe N, Yasuda A, Natsume M, Yoshikawa T. (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis, 25(4):549-57. https://doi.org/10.1093/carcin/bgh034

Youn J, Lee KH, Won J, Huh SJ, Yun HS, Cho WG, Paik DJ. (2003) Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. J Rheumatol, 30(6):1203-7.

Indu BJ, Ng LT. 2000. Herbs: The green pharmacy of Malaysia. Serdang, Malaysia: Vinpress, 2000.

Akowuah GA, Zhari I, Norhayati I, Sadikun A, Khamsah, SM. (2004) Sinensetin, eupatorin, 3?-hydroxy-5, 6, 7, 4?-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of Orthosiphon aristatus from Malaysia. Food Chem, 87(4):559-566. http://dx.doi.org/10.1016/j.foodchem.2004.01.008

Hossain MA and Rahman SM. (2011) Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res Int, 44(3):672-676. https://doi.org/10.1016/j.foodres.2010.11.036

Hossain MA, Salehuddin SM, Ismail Z. (2007) Isolation and Characterization of a new poly hydroxy Flavone from the leaves of Orthosiphon Aristatus. Indian J Nat prod, 23(4):3-7.

Luo C, Zou L, Sun H, Peng J, Gao C, Bao L, Ji R, Jin Y, Sun S. (2020) A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Front Pharmacol, 11:153. https://doi.org/10.3389%2Ffphar.2020.00153

Lau CH, Chua LS, Lee CT, Aziz R. (2015) Fractionation of rosmarinic acid from crude extract of Orthosiphon aristatus by solid phase extraction. J Eng Sci Technol, 10:104-112. http://dx.doi.org/10.13140/2.1.4106.0808

Takeo M, Lee W, Ito M. (2015) Wound healing and skin regeneration. Cold Spring Harb Perspect Med, 5(1):a023267. https://doi.org/10.1101%2Fcshperspect.a023267

Mustaffa NAAW, Hasham R, Sarmidi MR. (2015) An in vitro study of wound healing activity of Ficus deltoidea leaf extract. Jurnal Teknologi, 77(3):67-72. http://dx.doi.org/10.11113/jt.v77.6008

Guo S, Dipietro LA. (2010) Factors affecting wound healing. J Dent Res. 89(3):219-229. https://doi.org/10.1177%2F0022034509359125

Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, Duarte CM, Serra AT, Pinto R, Freitas M, Fernandes E, Silva-Lima B, Mota-Filipe H, Sepodes B. (2015) Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin Pharmacol Toxicol, 116(5):398-413. https://doi.org/10.1111/bcpt.12335

Yilanci S, Bali YY, Yuzbasioglu M, Unlu RE, Orhan E, Simon A, Kuruuzum-Uz A. (2015) The evaluation of wound healing potential of rosmarinic acid isolated from Arnebia purpurea. Planta Medica, 81(16): PM_135. https://doi.org/10.1055/s-0035-1565512

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH. (2020) Natural anti-aging skincare: Role and potential. Biogerontology, 21(3):293-310. https://doi.org/10.1007/s10522-020-09865-z

Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. (2000) Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta, 1478(1):51-60. https://doi.org/10.1016/s0167-4838(00)00009-1

Jiratchayamaethasakul C, Ding Y, Hwang O, et al. (2020) In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fish Aquatic Sci, 23:6. https://doi.org/10.1186/s41240-020-00149-8

Fadel O, El Kirat K, Morandat S. (2011) The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochim Biophys Acta, 1808(12):2973-2980. https://doi.org/10.1016/j.bbamem.2011.08.011

Du T, Li L, Song N, Xie J, Jiang H. (2010) Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. Int J Toxicol, 29(6):625-633. https://doi.org/10.1177/1091581810383705

Leonida M, Kumar I. (2016) Wound Healing and Skin Regeneration. In: Bionanomaterials for Skin Regeneration. SpringerBriefs in Bioengineering. Springer, Cham 17-25. https://doi.org/10.1007/978-3-319-39168-7

Clark R. (1993) Basics of Cutaneous Wound Repair. J. Dermatol. Surg Oncol, 19:693–706. https://doi.org/10.1111/j.1524-4725.1993.tb00413.x

Chang L, Liang J, Xia X, Chen X. (2019) miRNA-126 enhances viability, colony formation, and migration of keratinocytes HaCaT cells by regulating PI3?K/AKT signaling pathway. Cell Biol Int, 43(2):182-191. https://doi.org/10.1002/cbin.11088

Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M. (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res, 365(3):495-506. https://doi.org/10.1007/s00441-016-2464-0

Xiao W, Tang H, Wu M, Liao Y, Li K, Li L, Xu X. (2017) Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. Biosci Rep, 37(6):BSR20170658. https://doi.org/10.1042/bsr20170658

de Oliveira JR, Camargo SEA, de Oliveira LD. (2019) Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci, 26(1):5. https://doi.org/10.1186/s12929-019-0499-8

Begum A, Sandhya S, Shaffath Ali S, Vinod KR, Reddy S, Banji D. (2013) An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci Pol Technol Aliment, 12(1):61-73.

Teixeira B, Marques A, Ramos C, Serrano C, Matos O, Neng NR, Nogueira JM, Saraiva JA, Nunes ML. (2013) Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J Sci Food Agric, 93(11):2707-14. https://doi.org/10.1002/jsfa.6089

Faleiro L, Miguel G, Gomes S, et al. (2005) Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J Agric Food Chem, 53(21):8162-8168. https://doi.org/10.1021/jf0510079

Sarikurkcu C, Zengin G, Oskay M, Uysal S, Ceylan R, Aktumsek A. (2015) Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind Crops Prod, 70:178-184. https://doi.org/10.1016/j.indcrop.2015.03.030

de Torre MP, Vizmanos JL, Cavero RY, Calvo MI. (2020) Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed Pharmacother, 129:110424. https://doi.org/10.1016/j.biopha.2020.110424

Oreopoulou A, Choulitoudi E, Tsimogiannis D, Oreopoulou V. (2021) Six Common Herbs with Distinctive Bioactive, Antioxidant Components. A Review of Their Separation Techniques. Molecules, 26(10):2920. https://doi.org/10.3390/molecules26102920

Choulitoudi E, Xristou M, Tsimogiannis D, Oreopoulou V. (2021) The effect of temperature on the phenolic content and oxidative stability of o/w emulsions enriched with natural extracts from Satureja thymbra. Food Chem, 349:129206. https://doi.org/10.1016/j.foodchem.2021.129206

Miraj S, Rafieian-Kopaei, Kiani S. (2017) Melissa officinalis L: A Review Study with an Antioxidant Prospective. J Evid Based Complementary Altern Med, 22(3):385-394. https://doi.org/10.1177/2156587216663433

Ramanauskiene K, Raudonis R, Majiene D. (2016) Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells. Oxid Med Cell Longev, 2016:1564257. https://doi.org/10.1155/2016/1564257

Published

2023-07-26

How to Cite

Hasham, R., Maniarasu, N., Jemon, K. ., Abd Latif, N. ., & Bahari, H. (2023). A REVIEW ON ROSMARINIC ACID RICH EXTRACT FOR SKIN REGENERATION THROUGH RAPAMYCIN SIGNALING PATHWAY. Chemical and Natural Resources Engineering Journal (Formally Known As Biological and Natural Resources Engineering Journal), 7(1), 1–9. https://doi.org/10.31436/cnrej.v7i1.85