PRODUCTION AND CHARACTERIZATION OF CASCARA POWDER FROM COFFEE PULP

Authors

  • Sherly Agustin
  • Angelica Wiliana
  • Angela Justina Kumalaputri
  • Muhammad Yusuf Abduh Institut Teknologi Bandung

DOI:

https://doi.org/10.31436/cnrej.v6i1.66

Keywords:

Coffee pulp, Cascara Powder, Amylographic Properties, Nutrional Value

Abstract

Despite being a waste product of the coffee industry, coffee pulp contains a range of valuable nutrients. With the increasing demand for coffee in the current market, the status quo presents an opportunity for its valorization into a food ingredient such as cascara flour. Hence, this study is aimed to analyze the amylographic and nutritive properties of cascara to support its development as a product. Cascara powdering was done with different blender speed (scale 1, 2, and 3) and duration (1, 2, and 3 minutes) variations. It is found that the finer particles are achieved with greater blender speed and longer process duration. The powder within the size range of 0.074-0.149 mm possesses a lower gelatinization temperature and a higher maximum viscosity value than those of 0.149-0.177 mm, while also having a lower swelling power value. The amylose concentration present within the cascara flour is also relatively low (10.23%) compared to the market-available flour, which causes the cascara powder to possess a high gelatinization temperature (85-95 °C), low maximum viscosity (132.5-265 cP), and low swelling power (3.214-7.026 g water/ g starch). The cascara powder is found to follow a dilatant time-independent non-Newtonian fluid characteristic. The nutritional content in cascara powder includes 61.7% carbohydrates, 9.902% protein, 20.95% fiber, and 528 mg of vitamin C per 100 g sample.

Downloads

Download data is not yet available.

References

International Coffee Organisation (ICO). (2020). “The value of coffee” Coffee Development Report.

Business Wire. (2021, December 8). Global Coffee Market (2021 to 2025) - insights & forecast with potential impact of covid-19 - researchandmarkets.com. Business Wire. Retrieved March 5, 2022, from https://www.businesswire.com/news/home/20211208005778/en/Global-Coffee-Market-2021-to-2025---Insights-Forecast-with-Potential-Impact-of-COVID-19---ResearchAndMarkets.com

International Coffee Association, 2018, Coffee Production, http://www.ico.org/. accessed on February 2019.

International Coffee Organization. (2020) Coffee production by exporting countries, Available: http://www.ico.org/trade_statistics.asp?section=Statistics.

del Castillo MD, Iriondo-Dehond A, Martinez-Saez N, Fernandez-Gomez B, Iriondo-Dehond M, Zhou JR. (2017) Application of recovered compounds in food products, Handbook of Coffee Processing By-Products: Sustainable Applications, C. M. Galanakis, eds., Academic Press, 10(8): 171-190.

Chala B, Oechsner H, Fritz T, Latif S, Müller J. (2018) Increasing the loading rate of continuous stirred tank reactor for coffee husk and pulp: Effect of trace elements supplement, Engineering in Life Sciences, 18(8): 551-561.

Melisa, 2018, Studi Pemanfaatan Limbah Kulit Kopi Toraja Sebagai Bahan Pembuatan Kompos, Universitas Hassanudin, Makassar.

Esquivel, P. Dan Victor, M.J., 2011, Functional Properties of Coffee and Coffee Byproducts, Food Research International, 492-499.

Raharjani, S. A., Arlene, Jessica Angelia, Angela Justina Kumalaputri, Agus Chahyadi, & Abduh, M. Y. (2021). Effect of Extraction Conditions on Yield and Bioactive Compounds Of Coffee Pulp Extract. Biological and Natural Resources Engineering Journal, 5(2), 28–36. Retrieved from https://journals.iium.edu.my/bnrej/index.php/bnrej/article/view/61

Chang SK, Alasalvar C, Shahidi F. (2016) Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits., Journal of Functional Foods, 21: 113-132.

Murthy PS, Manjunatha MR, Sulochannama G, Naidu MM. (2021) Extraction, characterization and bioactivity of coffee anthocyanins, European Journal of Biological Sciences, 4(1), 13-19.

Murthy PS, Naidu MM. (2010) Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products, Food and Bioprocess Technology, 5(3), 897-903.

Vijayalaxmi S, Jayalakshmi SK, Sreeramulu K. (2015) Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. Journal of Food Science and Technology, 52(5), 2761-2769.

EFSA Scientific Committee. (2011). Guidance on conducting repeated-dose 90-day oral toxicity study in rodents onwhole food/feed. EFSA Journal 2011, 9(12), 2438, 21 pp.https://doi.org/10.2903/j.efsa.2011.2438

EFSA Scientific Committee. (2022). Safety of dried coffee husk (cascara) from Coffea arabica L. as a Novel food pursuant to Regulation (EU) 2015/2283. EPSA Journal 2022, 20(2), 7085. doi: 10.2903/j.efsa.2022.7085

Iriondo-DeHond, A., Ana Sofia Elizondo, Maite Iriondo-DeHond, Maria Belén Ríos, Romina Murfari, Jose A. Mendiola, Elena Ibañez, Maria Dolores del Castillo. (2020). Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods 2020, 9, 620, doi:10.3390/foods9050620

Galanakis, C., M. 2017. Handbook of coffee processing by-products: sustainable applications. United Kingdom. Academic Press.

Richana, N., dan Sunarto, T.C. (2004). Karakteristik Sifat Fisikokimia Tepung Umbi dan Tepung Pati Dari Umbi Ganyong, Suweg, Ubikelapa, dan Gembili, Jurnal Pascapanen, 35.

Kainuma, K., Odat, T., & Cuzuki, S. (1967). Study of starch phosphates monoesters, Journal of Technology Society Starch, 14, 24 - 28.

Leach, H.W., Mc Cowen, L.D., & Schoch, T .J. (1959). Structure of the starch granules. In: swelling and solubility patterns of various starches, Cereal Chemistry, 36, 534 – 544.

Hartanto, Y., 2015, Karakteristik Rheologi Petis Berbasis Kepala dan Kulit Udang, Universitas Katolik Parahyangan, Bandung.

AOAC. (1995). Official Methods of Analysis, Association of Official Analytical Chemists, AOAC.

Abadi, M.F., Agus, N., Adreng P., Made, S., Silvia, N.N.S., dan Ni, W.M. (2014). Penentuan Kadar Sukrosa Pada Nira Kelapa dan Nira Aren dengan Menggunakan Metode Luff Schoorl, Journal of Chemistry Laboratory, 30, 38.

Apriyanto, A., D. Fardiaz, N.L. Puspitasari, Sedarnawati dan S. Budiyanto. (1989). Analisa Pangan. Bogor.

Ardiansyah, Nurlansi, Rustam Musta. (2018). Optimum Time Waste Processed Starch Hydrolysis of Cassava (Manihot esculenta Crantz var. Lahumbu) into Liquid Sugar using Enzymes ?-Amylase and Glucoamylase. Indo. J. Chem. Res., 5(2), 86-95.

Belitz, H.D., dan W.Grosch. (1987). Food Chemistry, Second Edition, Springer Berlin, Berlin.

Blazek, J., dan Les, C., 2007, Pasting and Swelling Properties of Wheat Flour and Starch in Relation to Amylose Content, Journal of Carbohydrate Polymers, 71, p. 382-391.

Saragih, M.R.B., 2016, Komposisi Tepung Jagung (Zea mays L.) dan Tepung Tapioka dengan Penambahan Daging Ikan Patin (Pangasius. sp) Terhadap Karakteristik Mi Jagung, Skripsi, Universitas Pasundan, Bandung.

Imam, R.H., Mutiara, P., dan Nurheni, S.P. (2014). Konsistensi Mutu Pilus Tepung Tapioka: Identifikasi Parameter Utama Penentu Kerenyahan, Jurnal Mutu Pangan, 1, p. 93-95.

Sangeta, dan RB, G. (2018). Pasting Properties of Maize Flour Frm Variety HQPM-1 and HQPM-7, Journal of Pharmacognosy and Phytochemistry, 7, 224.

Sharma, S., Baljit, S., dan B.N. Dar. (2015). Comparative Study on Functional, Rheological, Thermal, and Morphological Properties of Native and Modified Cereal Flours, International Journal of Food Properties, 19, 1955-1956.

Hidayati, F.U.N. (2013). Daya Pembengkakan Campuran Tepung Kimpul dan Tepung Terigu Terhadap Tingkat Pengembangan dan Kesukaan Sensorik Roti Tawar, Skripsi, Universitas Muhammadiyah, Surakarta.

Ariyanti, D., Budiyati, C.S., Kumoro, A.C. (2014) Modifikasi Tepung Umbi Talas Bogor dengan Teknik Oksidasi Sebagai Bahan Pangan Pengganti Tepung Terigu, Chemical Engineering Journal, 15, 1-9.

Kusumayanti, H., Noer, A.H., dan Herry, S. (2015). Swelling Power and Water of Solubility

of Cassava and Sweet Potatoes Flour, 23, 164-167.

Sandhu, K.S., dan Narpinder, S. (2005). Some Properties of Corn Starches II : Physicochemical, Gelatinization, Retrogradation,Pasting, and Gel Textural Properties, 101, 1499-1507.

Monica, H. (2014). Perubahan Sifat Fisikokimia Tepung Beras Organic Putih Varietas Jasmine, Merah Varietas Saodah, dan Hitam varietas Jawa dengan Pengemas PE dan P Selama 6 Bulan Penyimpanan Pada Suhu Kamar, Skripsi, Universitas Surabaya, Surabaya.

Wanyo, P., Channarong, C., dan Sirithon, S. (2009). Substituion of Wheat Flour with Rice Flour and Rice Bran in Flake Products : Effects on Chemical, Physical, and Antioxidant Properties, Science Journal, 7, 49-56.

Sari, Y.S., Ansarullah, Kobajashi, T.I. (2018). Pengaruh Formulasi Tepung Jagung dan Tepung Ikan Tembang Terhadap Penilaian Sensoris, Kimia, dan Angka Kecukupan Gizi (AKG) Produk Flakes, Jurnal Sains dan Teknologi Pangan, 3, 1420-1434.

Rahman, S. (2018). Teknologi Pengolahan Tepung dan Pati Biji-Bijian Berbasis Tanaman Kayu. Deepublish.

Sitohang, S.N.J., Zulkifli, L., dan Ridwansyah. (2015). Karakteristik Disikokimia dan Fungsional Tepung Gandum di Sumatera Utara, Jurnal Rekayasa Pangan dan Pertanian, 3, 331.

Sihombing, M. (2014). Kinetika Hidrolisis Pembentukan Gula Pereduksi dengan Pengaruh Variasi Konsentrasi HCl dan Temperatur Hidrolisis. Skripsi.

Hidayati, F.U.N., 2013, Daya Pembengkakan Campuran Tepung Kimpul dan Tepung Terigu Terhadap Tingkat Pengembangan dan Kesukaan Sensorik Roti Tawar. (Skripsi). Universitas Muhammadiyah, Surakarta.

Singh, V., Hiroshi O., Hidechika T., Seiichiro I., Ken'ichi O. (2000). Thermal and Physicochemical Properties of Rice Grain, Flour and Starch. J. Agric. Food Chem, 48, 2639-2647.

Reputra, J. (2009). Karakterisasi Tapioka dan Penentuan Formulasi Premix Sebagai Bahan Penyalut Untuk Produk Fried Snack. Skripsi. Institut Pertanian Bogor, Bogor.

Reputra, J. (2009). Karakterisasi Tapioka dan Penentuan Formulasi Premix Sebagai Bahan Penyalut Untuk Produk Fried Snack. Skripsi. Institut Pertanian Bogor, Bogor.

Deng, L., dan Manther F.A., 2017, Laboratory-scale Milling of Whole-drum Flour Quality Effect of Mill Configuration and Seed Conditioning, Journal of Science of Food, 97, 3145-3147.

Standar Nasional Indonesia. (2006). Tepung Terigu Sebagai Bahan Makanan (SNI-01-3751- 2006).

Muhandri, T., 2007, Pengaruh Ukuran Partikel, Kadar Padatan, NaCl dan Na2CO3 erhadap Sifat Amilografi Tepung dan Pati Jagung. Jurnal Teknologi dan Industri Pangan, 18(2), 110-111.

Prima, A., Ariestya, A., Willy, L. (2013). Pembuatan dan Karakterisasi Tepung dan Pati Ubi Jalar Ungu, Skripsi, Universitas Katolik Parahyangan, Bandung.

Purnamasari, Indah, Hapy J., 2010, Pengaruh Hidrolisa Asam-Alkohol dan Waktu Hidrolisa Asam terhadap Sifat Tepung Tapioka, Skripsi, Universitas Diponegoro, Semarang.

Indrastuti, E., Harijono, dan Bambang, S. (2012). Karakteristik Tepung Uwi Ungu (Dioscorea alata L.) yang Direndam dan Dikeringkan Sebagai Bahan Edible Paper. Jurnal Teknologi Pertanian, 13, 173.

Sasaki, T., & Matsuki, J. (1998). Effect of Wheat Starch Structure on Swelling Power. Cereal Chemistry Journal, 75(4), 525–529. doi:10.1094/cchem.1998.75.4.525.

Fachturi, A. dan Wijayatiningrum, F.N. (2009). Modifikasi Cassava Starch dengan Proses Oksidasi Sodium Hypoclorite untuk Industri Kertas, Skripsi, Universitas Diponegoro, Semarang.

Tjahjadi, C. (2008). Pengantar Teknologi Pangan, Universitas Padjadjaran, Jatinangor.

Immaningsih, Nelis. (2012). Profil Gelatinisasi Beberapa Formulasi Tepung-tepungan untuk Pendugaan sifat Pemasakan. Panel Gizi Makan. 2012, 35(1):13-22 . Jakarta. Pusat Biomedis dan Teknologi Dasar Kesehatan, Badan Litbangkes, Kemenkes RI.

Widjanarko, S.B., dan Thabah, S.S. (2014). Pengaruh Lama Penggilingan dengan Metode Ball Mill Terhadap Renddemen dan Kemampuan Hidrasi Tepung Porang (Amorphophallus Muelleri Blume), Jurnal Pangan dan Agroindustri, 80.

Tala, Z.Z., 2009, Manfaat Serat Bagi Kesehatan, Universitas Sumatera Utara, Sumatera Utara.

Downloads

Published

2022-06-28

How to Cite

Agustin, S., Wiliana, A., Angela Justina Kumalaputri, & Abduh, M. Y. (2022). PRODUCTION AND CHARACTERIZATION OF CASCARA POWDER FROM COFFEE PULP . Chemical and Natural Resources Engineering Journal (Formally Known As Biological and Natural Resources Engineering Journal), 6(1). https://doi.org/10.31436/cnrej.v6i1.66