In vitro kinetics characterisation of polymeric nanoparticles for anticancer therapy

Authors

  • Umar Azhan Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. image/svg+xml https://orcid.org/0000-0002-4484-4219
  • Izzat Fahimuddin Mohamed Suffian Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. image/svg+xml https://orcid.org/0000-0002-2778-8817
  • Siti Fairuz Che Othman Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. image/svg+xml
  • Hazrina Hadi Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia. image/svg+xml https://orcid.org/0000-0001-8132-3773

DOI:

https://doi.org/10.31436/jop.v4i2.322

Keywords:

Nanoparticles, Hydrogels, Chitosan, Carrageenan, in vitro, Cancer therapy

Abstract

World Health Organization (WHO) predicts that cancer incidence will increase in the future, thus research involving anticancer agents such as nanoparticles has gained significant importance. Nanoparticles can be made from various materials, but the focus on polymeric chitosan and/or carrageenan-based nanoparticles is significant. Research on these materials investigates dynamic parameters of in vitro drug release, stability under working conditions and stability under storage conditions (in vitro kinetics characterisations). Here, a literature review is conducted to provide in-depth insights on research methodology trends, drawbacks, suitability, suggestions for improvements and findings related to polymeric carrageenan and/or chitosan nanoparticles for anticancer therapy. Journal articles involving nanoparticles made from chitosan and/or carrageenan containing anticancer agents published between 2017 and 2022 were acquired through Google Scholar search using relevant keywords. Generally, the methods used to investigate drug release kinetics of nanoparticles can be categorised into dialysis membrane, sample and separate or direct measurement methods. Studies on the response of physiochemical characteristics towards changes in environment do not vary highly and are generalisable. Stability studies primarily measure the physicochemical changes of nanoparticles as a response measurement towards storage conditions. Both drug release selectivity and physicochemical characteristics response in different pH environments were found to be predictable via the ionisation of polymers and drugs used in different pH. The size of the nanoparticles formed during polyelectrolyte complexation process was found to be at its minimum at a balanced pH, possibly due to increased polymer-polymer attraction. The methods used for in vitro kinetics studies were generalised, and suggestions to address potential sources of errors were given in the current review. The selectivity of drug release and changes in physicochemical characteristics of the nanoparticles in different pH environments were found to largely coincide with the principles of ionisation of nanoparticle constituent.

Author Biographies

Umar Azhan, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.

MSc. Student, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy

Izzat Fahimuddin Mohamed Suffian, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.

Assistant Professor Lecturer, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy

Siti Fairuz Che Othman, Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.

Assistant Professor Lecturer, Department of Biotechnology, Kulliyyah of Science

Hazrina Hadi, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia.

Associate Professor Lecturer, Department of Pharmaceutical Technology, Kulliyyah of Pharmacy

References

Abouelmagd, S. A., Sun, B., Chang, A. C., Ku, Y. J., & Yeo, Y. (2015). Release kinetics study of poorly water-soluble drugs from nanoparticles: Are we doing it right? Molecular Pharmaceutics, 12(3), 997–1003. https://doi.org/10.1021/mp500817h

Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 109, 273–286. https://doi.org/10.1016/j.ijbiomac.2017.12.078

Al-Samydai, A., Al-Mamoori, F., Abdelnabi, H., & Aburjai, T. (2019). An updated review on anticancer activity of capsaicin. International Journal of Scientific and Technology Research, 8(12), 2625–2630.

Arif, M., Raja, M. A., Zeenat, S., Chi, Z., & Liu, C. (2017). Preparation and characterization of polyelectrolyte complex nanoparticles based on poly (malic acid), chitosan. A pH-dependent delivery system. Journal of Biomaterials Science, Polymer Edition, 28(1), 50–62. https://doi.org/10.1080/09205063.2016.1242460

Bourbon, A. I., Pinheiro, A. C., Cerqueira, M. A., & Vicente, A. A. (2018). In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids, 84, 267–275. https://doi.org/10.1016/j.foodhyd.2018.06.015

Chu, X., Huang, W., Wang, Y., Meng, L., Chen, L., Jin, M., Chen, L., Gao, C., Ge, C., Gao, Z., & Gao, C. (2019). Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin–chitosan nanoparticles loading paclitaxel–cholesterol complex. International Journal of Nanomedicine, 14, 689–705. https://doi.org/10.2147/IJN.S188667

Dhavale, R. P., Dhavale, R. P., Sahoo, S. C., Kollu, P., Jadhav, S. U., Patil, P. S., Dongale, T. D., Chougale, A. D., & Patil, P. B. (2021). Chitosan coated magnetic nanoparticles as carriers of anticancer drug Telmisartan: pH-responsive controlled drug release and cytotoxicity studies. Journal of Physics and Chemistry of Solids, 148. https://doi.org/10.1016/j.jpcs.2020.109749

Fan, L., Duan, M., Sun, X., Wang, H., & Liu, J. (2020). Injectable Liquid Metal- And Methotrexate-Loaded Microsphere for Cancer Chemophotothermal Synergistic Therapy. ACS Applied Bio Materials, 3(6), 3553–3559. https://doi.org/10.1021/acsabm.0c00171

Friedenthal, M., Eha, K., Kaleda, A., Part, N., & Laos, K. (2020). Instability of low-moisture carrageenans as affected by water vapor sorption at moderate storage temperatures. SN Applied Sciences, 2(2). https://doi.org/10.1007/s42452-020-2032-9

Gaur, P. K., Puri, D., Singh, A. P., Kumar, N., & Rastogi, S. (2022). Optimization and Pharmacokinetic Study of Boswellic Acid–Loaded Chitosan-Guggul Gum Nanoparticles Using Box-Behnken Experimental Design. Journal of Pharmaceutical Innovation, 17(2), 485–500. https://doi.org/10.1007/s12247-020-09527-0

Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2022). Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of ?-Mangostin. Polymers, 14(15). https://doi.org/10.3390/polym14153139

Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11(6), 673–692. https://doi.org/10.2217/nnm.16.5

Hotchkiss, S., Brooks, M., Campbell, R., Philp, K., & Trius, A. (2016). The Use of Carrageenan in Food. In L. Pereira (Ed.), Carrageenans - Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects (1st ed., pp. 229–243). Nova Science Publishers.

Irani, M., & Nodeh, S. M. (2022). PVA/?-carrageenan/Au/camptothecin/pegylated-polyurethane/paclitaxel nanofibers against lung cancer treatment. RSC Advances, 12(25), 16310–16318. https://doi.org/10.1039/d2ra02150a

Jafari, H., Atlasi, Z., Mahdavinia, G. R., Hadifar, S., & Sabzi, M. (2021). Magnetic ?-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. Materials Science and Engineering C, 124. https://doi.org/10.1016/j.msec.2021.112042

Jennings, J. A. (2017). Controlling chitosan degradation properties in vitro and in vivo. In Chitosan Based Biomaterials (Vol. 1, pp. 159–182). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100230-8.00007-8

Ji, F., Li, J., Qin, Z., Yang, B., Zhang, E., Dong, D., Wang, J., Wen, Y., Tian, L., & Yao, F. (2017). Engineering pectin-based hollow nanocapsules for delivery of anticancer drug. Carbohydrate Polymers, 177, 86–96. https://doi.org/10.1016/j.carbpol.2017.08.107

Jung, F., Nothnagel, L., Gao, F., Thurn, M., Vogel, V., & Wacker, M. G. (2018). A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. European Journal of Pharmaceutics and Biopharmaceutics, 127, 462–470. https://doi.org/10.1016/j.ejpb.2018.03.010

Karimi, M. H., Mahdavinia, G. R., & Massoumi, B. (2018). pH-controlled sunitinib anticancer release from magnetic chitosan nanoparticles crosslinked with ?-carrageenan. Materials Science and Engineering C, 91, 705–714. https://doi.org/10.1016/j.msec.2018.06.019

Kharkwal, H., & Janaswamy, S. (Eds.). (2017). Natural Polymers for Drug Delivery. CAB International.

Liu, C., Yuan, Y., Ma, M., Zhang, S., Wang, S., Li, H., Xu, Y., & Wang, D. (2020). Self-assembled composite nanoparticles based on zein as delivery vehicles of curcumin: Role of chondroitin sulfate. Food and Function, 11(6), 5377–5388. https://doi.org/10.1039/d0fo00964d

Liu, K., Huang, R. L., Zha, X. Q., Li, Q. M., Pan, L. H., & Luo, J. P. (2020). Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydrate Polymers, 232. https://doi.org/10.1016/j.carbpol.2019.115810

Mahdavinia, G. R., Mosallanezhad, A., Soleymani, M., & Sabzi, M. (2017). Magnetic- and pH-responsive ?-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. International Journal of Biological Macromolecules, 97, 209–217. https://doi.org/10.1016/j.ijbiomac.2017.01.012

Modi, S., & Anderson, B. D. (2013). Determination of drug release kinetics from nanoparticles: Overcoming pitfalls of the dynamic dialysis method. Molecular Pharmaceutics, 10(8), 3076–3089. https://doi.org/10.1021/mp400154a

Moradi, R., Mohammadzadeh, R., & Akbari, A. (2021). Kappa-Carrageenan Crosslinked Magnetic Folic Acid-Conjugated Chitosan Nanocomposites for Arginase Encapsulation, Delivery and Cancer Therapy. Nano LIFE, 11(03), 2140005. https://doi.org/10.1142/S1793984421400055

Moreno-Bautista, G., & Tam, K. C. (2011). Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1–3), 299–303. https://doi.org/10.1016/j.colsurfa.2011.07.032

Mulet-Cabero, A. I., Egger, L., Portmann, R., Ménard, O., Marze, S., Minekus, M., Le Feunteun, S., Sarkar, A., Grundy, M. M. L., Carrière, F., Golding, M., Dupont, D., Recio, I., Brodkorb, A., & Mackie, A. (2020). A standardised semi-dynamic: in vitro digestion method suitable for food-an international consensus. Food and Function, 11(2), 1702–1720. https://doi.org/10.1039/c9fo01293a

Narayanaswamy, R., & Torchilin, V. P. (2019). Hydrogels and Their Applications in Targeted Drug Delivery. Molecules, 24(3), 603. https://doi.org/10.3390/molecules24030603

Nguyen, T. H., Nguyen, T. C., Nguyen, T. M. T., Hoang, D. H., Tran, D. M. T., Tran, D. T., Hoang, P. T., Le, V. T., Tran, T. K. N., & Thai, H. (2022). Characteristics and Bioactivities of Carrageenan/Chitosan Microparticles Loading ?-Mangostin. Journal of Polymers and the Environment, 30(2), 631–643. https://doi.org/10.1007/s10924-021-02230-2

Nogueira, J., Soares, S. F., Amorim, C. O., Amaral, J. S., Silva, C., Martel, F., Trindade, T., & Daniel-Da-Silva, A. L. (2020). Magnetic driven nanocarriers for pH-responsive doxorubicin release in cancer therapy. Molecules, 25(2). https://doi.org/10.3390/molecules25020333

Rostami, E. (2020). Progresses in targeted drug delivery systems using chitosan nanoparticles in cancer therapy: A mini-review. Journal of Drug Delivery Science and Technology, 58, 101813. https://doi.org/10.1016/j.jddst.2020.101813

Sabra, R., Billa, N., & Roberts, C. J. (2018). An augmented delivery of the anticancer agent, curcumin, to the colon. Reactive and Functional Polymers, 123, 54–60. https://doi.org/10.1016/j.reactfunctpolym.2017.12.012

Sabra, R., Roberts, C. J., & Billa, N. (2019). Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin. Colloid and Interface Science Communications, 32, 100192. https://doi.org/10.1016/j.colcom.2019.100192

Sahatsapan, N., Rojanarata, T., Ngawhirunpat, T., Opanasopit, P., & Patrojanasophon, P. (2021). Doxorubicin-loaded chitosan-alginate nanoparticles with dual mucoadhesive functionalities for intravesical chemotherapy. Journal of Drug Delivery Science and Technology, 63. https://doi.org/10.1016/j.jddst.2021.102481

Sahu, P., Kashaw, S. K., Jain, S., Sau, S., & Iyer, A. K. (2017). Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. Journal of Controlled Release, 253, 122–136. https://doi.org/10.1016/j.jconrel.2017.03.023

Santamaría-Aguirre, J., Alcocer-Vallejo, R., & López-Fanárraga, M. (2018). Drug Nanoparticle Stability Assessment Using Isothermal and Nonisothermal Approaches. In Journal of Nanomaterials (Vol. 2018). Hindawi Limited. https://doi.org/10.1155/2018/3047178

Shafiee, S., Ahangar, H. A., & Saffar, A. (2019). Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydrate Polymers, 222. https://doi.org/10.1016/j.carbpol.2019.114982

Shahbazi, M., Rajabzadeh, G., Ettelaie, R., & Rafe, A. (2016). Kinetic study of ?-carrageenan degradation and its impact on mechanical and structural properties of chitosan/?-carrageenan film. Carbohydrate Polymers, 142, 167–176. https://doi.org/10.1016/j.carbpol.2016.01.037

Sun, X., Pan, C., Ying, Z., Yu, D., Duan, X., Huang, F., Ling, J., & Ouyang, X. kun. (2020). Stabilization of zein nanoparticles with k-carrageenan and tween 80 for encapsulation of curcumin. International Journal of Biological Macromolecules, 146, 549–559. https://doi.org/10.1016/j.ijbiomac.2020.01.053

Tharkar, P., Varanasi, R., Wong, W. S. F., Jin, C. T., & Chrzanowski, W. (2019). Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. In Frontiers in Bioengineering and Biotechnology (Vol. 7). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2019.00324

Trousil, J., Pavliš, O., Kubí?ková, P., Škori?, M., Marešová, V., Pavlova, E., Knudsen, K. D., Dai, Y.-S., Zimmerman, M., Dartois, V., Fang, J.-Y., & Hrubý, M. (2020). Antitubercular nanocarrier monotherapy: Study of In Vivo efficacy and pharmacokinetics for rifampicin. Journal of Controlled Release, 321, 312–323. https://doi.org/10.1016/j.jconrel.2020.02.026

Utreja, P., Verma, S., Rahman, M., & Kumar, L. (2020). Use of Nanoparticles in Medicine. Current Biochemical Engineering, 6(1), 7–24. https://doi.org/10.2174/2212711906666190724145101

Vinothini, K., Rajendran, N. K., Munusamy, M. A., Alarfaj, A. A., & Rajan, M. (2019). Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded ?-carrageenan grafted graphene oxide nanocarrier. Materials Science and Engineering C, 100, 676–687. https://doi.org/10.1016/j.msec.2019.03.011

Wallace, S. J., Li, J., Nation, R. L., & Boyd, B. J. (2012). Drug release from nanomedicines: Selection of appropriate encapsulation and release methodology. Drug Delivery and Translational Research, 2(4), 284–292. https://doi.org/10.1007/s13346-012-0064-4

Wang, J., Ni, C., Zhang, Y., Zhang, M., Li, W., Yao, B., & Zhang, L. (2014). Preparation and pH controlled release of polyelectrolyte complex of poly(l-malic acid-co-d,l-lactic acid) and chitosan. Colloids and Surfaces B: Biointerfaces, 115, 275–279. https://doi.org/10.1016/j.colsurfb.2013.12.018

Wang, S., Pi, L., Wen, H., Yu, H., & Yang, X. (2020). Evaluation of novel magnetic targeting microspheres loading adriamycin based on carboxymethyl chitosan. Journal of Drug Delivery Science and Technology, 55, 101388. https://doi.org/10.1016/j.jddst.2019.101388

Wathoni, N., Meylina, L., Rusdin, A., Abdelwahab Mohammed, A. F., Tirtamie, D., Herdiana, Y., Motoyama, K., Panatarani, C., Joni, I. M., Lesmana, R., & Muchtaridi, M. (2021). The potential cytotoxic activity enhancement of ?-mangostin in chitosan-kappa carrageenan-loaded nanoparticle against mcf-7 cell line. Polymers, 13(11). https://doi.org/10.3390/polym13111681

Weng, J., Tong, H. H. Y., & Chow, S. F. (2020). In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics, 12(8), 1–18. https://doi.org/10.3390/pharmaceutics12080732

World Health Organization. (2012). Cancer - Key Statistics. https://www.who.int/cancer/resources/keyfacts/en/

World Health Organization. (2020). Malaysia - Cancer Country Profile 2020. https://www.who.int/cancer/country-profiles/MYS_2020.pdf

Yan, J. K., Qiu, W. Y., Wang, Y. Y., Wu, L. X., & Cheung, P. C. K. (2018). Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. International Journal of Biological Macromolecules, 107(PartA), 397–405. https://doi.org/10.1016/j.ijbiomac.2017.09.004

Yu, M., Yuan, W., Li, D., Schwendeman, A., & Schwendeman, S. P. (2019). Predicting drug release kinetics from nanocarriers inside dialysis bags. Journal of Controlled Release, 315, 23–30. https://doi.org/10.1016/j.jconrel.2019.09.016

Yusefi, M., Chan, H. Y., Teow, S. Y., Kia, P., Lee-Kiun Soon, M., Sidik, N. A. B. C., & Shameli, K. (2021). 5-fluorouracil encapsulated chitosan-cellulose fiber bionanocomposites: Synthesis, characterization and in vitro analysis towards colorectal cancer cells. Nanomaterials, 11(7). https://doi.org/10.3390/nano11071691

Zambito, Y., Pedreschi, E., & di Colo, G. (2012). Is dialysis a reliable method for studying drug release from nanoparticulate systems? - A case study. International Journal of Pharmaceutics, 434(1–2), 28–34. https://doi.org/10.1016/j.ijpharm.2012.05.020

Zhang, E., Xing, R., Liu, S., Li, K., Qin, Y., Yu, H., & Li, P. (2019). Vascular targeted chitosan-derived nanoparticles as docetaxel carriers for gastric cancer therapy. International Journal of Biological Macromolecules, 126, 662–672. https://doi.org/10.1016/j.ijbiomac.2018.12.262

Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. (2017). A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 96, 282–301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

Zieli?ska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731

Downloads

Published

2024-07-31

How to Cite

Azhan, U., Mohamed Suffian, I. F., Che Othman, S. F., & Hadi, H. (2024). In vitro kinetics characterisation of polymeric nanoparticles for anticancer therapy . Journal of Pharmacy, 4(2), 279–304. https://doi.org/10.31436/jop.v4i2.322

Issue

Section

Review Articles

Most read articles by the same author(s)