Fabrication, Applications and Future Prospects of Mesoporous Silica Nanoparticles

Authors

  • Fatema Zohera Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia https://orcid.org/0009-0006-4718-5390
  • Farahidah Mohamed Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia https://orcid.org/0000-0003-3971-1443
  • Abul Kalam Azad Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), 68100, Kuala Lumpur, Malaysia
  • May Kyaw Oo Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), 68100, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.31436/jop.v4i2.264

Keywords:

Nanomedicine, Nanotechnology, Biocompatibility, Characterisation, Biocatalysis, Homogeneity, Theranostic

Abstract

In past decades, nanomedicine has become a prominent area of focus within the discipline of nanotechnology, eliciting significant anticipation within the field of biomedical research. Scientists are creating unique nanoparticles for diagnosis, utilising techniques for imaging as well as therapy applications using medication delivery techniques. Mesoporous silica nanoparticles (MSNs), a recent addition to this area, serve as a sterling example of innovative nanostructures that offer distinctive and exceptional features. These features make them valuable for developing drug delivery systems with consistent and positive advancements in preclinical. MSNs efficiently encapsulate, control, and sometimes deliver biologic agents intracellularly for clinical use due to their distinct physicochemical characteristics, such as high porosity, large surface area, adjustable pore size and dimensions, good biocompatibility, and significant loading capacity. In this article, we discuss the latest advancements in fabrication, their presumed usefulness in delivering medications, and their application as diagnostic tools. It has been demonstrated that silica can store and release therapeutics, such as antibiotics, in a sustained and controlled manner. The desirable properties of MSNs have been further enhanced by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species and their conjugates. These substantial advancements in innovative colloidal inorganic nanocontainers have driven researchers to explore their use in novel applications, such as stimuli (light/ultrasound/ magnetic)-responsive delivery-associated therapies with exceptional in vivo performance. This article provides a brief overview of the fabrication of siliceous frameworks and discusses significant advances in the engineering of MSNs.  The precise control of the shape, dimension, homogeneity, and dispersity of MSNs is crucial, as these characteristics are critical quality attributes necessary for regulatory approval. Currently, explicit FDA guidelines for developing nanomaterial-based formulations intended for diagnostic or therapeutic purposes are lacking. Therefore, establishing standardised protocols and techniques for the synthesis and characterisation of nanoparticles, particularly for their use as theranostics, is essential for future commercial potential.

References

Ahmed, H., Gomte, S. S., Prathyusha, E., A, P., Agrawal, M., & Alexander, A. (2022). Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. Journal of Drug Delivery Science and Technology, 76, 103729. https://doi.org/10.1016/j.jddst.2022.103729

Alothman, Z. A. (2012). Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874–2902.

Alyassin, Y., Sayed, E. G., Mehta, P., Ruparelia, K., Arshad, M. S., Rasekh, M., Shepherd, J., Kucuk, I., Wilson, P. B., Singh, N., Chang, M.-W., Fatouros, D. G., & Ahmad, Z. (2020). Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents. Drug Discovery Today, 25(8), 1513–1520. https://doi.org/10.1016/j.drudis.2020.06.006

Atanase, L. I. (2021). Micellar drug delivery systems based on natural biopolymers. Polymers, 13(3), 477. https://doi.org/10.3390/polym13030477

Banche-Niclot, F., Montalbano, G., Fiorilli, S., & Vitale-Brovarone, C. (2021). PEG-coated large mesoporous silicas as smart platform for protein delivery and their use in a collagen-based formulation for 3D printing. International Journal of Molecular Sciences, 22(4), 1718. https://doi.org/10.3390/ijms22041718

Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834–10843. https://doi.org/10.1021/ja00053a020

Begines, B., Ortiz, T., Perez-Aranda, M., Martínez, G., Merinero, M., Arguelles-Arias, F., & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 10(7), 1403. https://doi.org/10.3390/nano10071403

Bertrand, N., Wu, J., Xu, X., Kamaly, N., & Farokhzad, O. C. (2014). Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 66, 2–25. https://doi.org/10.1016/j.addr.2013.11.009

Bharti, C., Gulati, N., Nagaich, U., & Pal, A. (2015). Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation, 5(3), 124. https://doi.org/10.4103/2230-973X.160844

Bian, S., Gao, K., Shen, H., Jiang, X., Long, Y., & Chen, Y. (2013). Organic/inorganic hybrid mesoporous silica membrane rapidly synthesized by a microwave-assisted method and its application in enzyme adsorption and electrocatalysis. Journal of Materials Chemistry B, 1, 3267-3276. https://doi.org/10.1039/C3TB20169D

Bindini, E., Ramirez, M. de los A., Rios, X., Cossío, U., Simó, C., Gomez?Vallejo, V., Soler?Illia, G., Llop, J., & Moya, S. E. (2021). In vivo tracking of the degradation of mesoporous silica through 89 Zr radio?labeled core–shell nanoparticles. Small, 17(30). https://doi.org/10.1002/smll.202101519

Xu, B., Li, S., Shi, R., Liu, H. (2023). Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduction and Targeted Therapy, 8, Article 435. https://doi.org/10.1038/s41392-023-01654-7

Caccamo, D., Currò, M., Ientile, R., et al. (2020). Intracellular fate and impact on gene expression of doxorubicin/cyclodextrin-graphene nanomaterials at sub-toxic concentration. International Journal of Molecular Sciences, 21, 4891. https://doi.org/10.3390/ijms21144891

Chen, Y., Chen, H., Guo, L., He, Q., Chen, F., Zhou, J., Feng, J., & Shi, J. (2010). Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 4(1), 529–539. https://doi.org/10.1021/nn901398j

Chen, Y., Meng, Q., Wu, M., Wang, S., Xu, P., Chen, H., Li, Y., Zhang, L., Wang, L., & Shi, J. (2014). Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. Journal of the American Chemical Society, 136(46), 16326–16334. https://doi.org/10.1021/ja508721y

Chen, Y., & Shi, J. (2016). Chemistry of mesoporous organosilica in nanotechnology: Molecularly organic–inorganic hybridization into frameworks. Advanced Materials, 28(17), 3235–3272. https://doi.org/10.1002/adma.201505147

Chen, F., Hong, H., Shi, S., Goel, S., Valdovinos, H. F., Hernandez, R., Theuer, C. P., Barnhart, T. E., & Cai, W. (2015). Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Scientific Reports, 4, 5080. https://doi.org/10.1038/srep05080

Cheng, B., He, H., Huang, T., Berr, S. S., He, J., Fan, D., Zhang, J., & Xu, P. (2016). Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy. Journal of Biomedical Nanotechnology, 12(3), 435–449. https://doi.org/10.1166/jbn.2016.2195

Danks, A. E., Hall, S. R., & Schnepp, Z. (2016). The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Materials Horizons, 3(2), 91–112. https://doi.org/10.1039/C5MH00260E

Egger, S. M., Hurley, K. R., Datt, A., Swindlehurst, G., & Haynes, C. L. (2015). Ultraporous mesostructured silica nanoparticles. Chemistry of Materials, 27(9), 3193–3196. https://doi.org/10.1021/cm504448u

Fadeel, B., & Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62(3), 362–374. https://doi.org/10.1016/j.addr.2009.11.008

Feliczak-Guzik, A., Jadach, B., Piotrowska, H., Murias, M., Lulek, J., & Nowak, I. (2016). Synthesis and characterization of SBA-16 type mesoporous materials containing amine groups. Microporous and Mesoporous Materials, 220, 231–238.

Feng, S., & Guanghua, L. (2011). Hydrothermal and solvothermal syntheses. In Modern Inorganic Synthetic Chemistry (pp. 63–95). Elsevier. https://doi.org/10.1016/B978-0-444-53599-3.10004-6

Grun, M., Lauer, I., & Unger, K. K. (1997). The synthesis of micrometer? and submicrometer?size spheres of ordered mesoporous oxide MCM?41. Advanced Materials, 9(3), 254–257. https://doi.org/10.1002/adma.19970090317

He, Q., & Shi, J. (2014). MSN anti?cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 26(3), 391–411. https://doi.org/10.1002/adma.201303123

He, Y., Shu, C.-C., Guo, Y., Long, M., & Xu, H. (2020). Visualizing ultrasmall silica–CTAB hybrid nanoparticles for generating high photoluminescence. Journal of Materials Chemistry C, 8(19), 6413–6421. https://doi.org/10.1039/D0TC00797H

Horcajada, P., Rámila, A., Pérez-Pariente, J., & Vallet-Reg??, M. (2004). Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous and Mesoporous Materials, 68(1–3), 105–109. https://doi.org/10.1016/j.micromeso.2003.12.012

Hosseini, S. M., Mohammadnejad, J., Salamat, S., Beiram Zadeh, Z., Tanhaei, M., & Ramakrishna, S. (2023). Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Materials Today Chemistry, 29, 101400. https://doi.org/10.1016/j.mtchem.2023.101400

Hosseinpour, S., Cao, Y., Liu, J., Xu, C., & Walsh, L. J. (2021). Efficient transfection and long-term stability of rno-miRNA-26a-5p for osteogenic differentiation by large pore sized mesoporous silica nanoparticles. Journal of Materials Chemistry B, 9(9), 2275–2284. https://doi.org/10.1039/D0TB02756A

Hou, L., Zheng, Y., Wang, Y., Hu, Y., Shi, J., Liu, Q., Zhang, H., & Zhang, Z. (2018). Self-regulated carboxyphenylboronic acid-modified mesoporous silica nanoparticles with “Touch Switch” releasing property for insulin delivery. ACS Applied Materials & Interfaces, 10(26), 21927–21938. https://doi.org/10.1021/acsami.8b06998

Meng, H., Xue, M., Xia, T., Ji, Z., Tarn, D. Y., Zink, J. I., & Nel, A. E. (2011). Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano, 5(5), 4131. https://doi.org/10.1021/nn200809t

Ishii, H., Ikuno, T., Shimojima, A., & Okubo, T. (2015). Preparation of core–shell mesoporous silica nanoparticles with bimodal pore structures by regrowth method. Journal of Colloid and Interface Science, 448, 57–64. https://doi.org/10.1016/j.jcis.2015.01.057

Janjua, T. I., Cao, Y., Yu, C., et al. (2021). Clinical translation of silica nanoparticles. Nature Reviews Materials, 6, 1072-1074. https://doi.org/10.1038/s41578-021-00385-x

Jarmoli?ska, S., Feliczak-Guzik, A., & Nowak, I. (2020). Synthesis, characterization and use of mesoporous silicas of the following types SBA-1, SBA-2, HMM-1 and HMM-2. Materials, 13(19), 1–33.

Lai, J., Shah, B. P., Zhang, Y., Yang, L., & Lee, K.-B. (2015). Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano, 9(5), 5234–5245. https://doi.org/10.1021/acsnano.5b00641

Lérida-Viso, A., Estepa-Fernández, A., García-Fernández, A., Martí-Centelles, V., & Martínez-Máñez, R. (2023). Biosafety of mesoporous silica nanoparticles; towards clinical translation. Advanced Drug Delivery Reviews, 201, 115049. https://doi.org/10.1016/j.addr.2023.115049

Leyane, T. S., Jere, S. W., & Houreld, N. N. (2022). Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. International Journal of Molecular Sciences, 23(13), 7273. https://doi.org/10.3390/ijms23137273

Li, Y., & Shi, J. (2014). Hollow?structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 26(20), 3176–3205. https://doi.org/10.1002/adma.201305319

Lin, H. P., & Mou, C. Y. (1996). Tubules-within-a-tubule hierarchical order of mesoporous molecular sieves in MCM-41. Science, 273(5276), 765–768. https://doi.org/10.1126/science.273.5276.765

Lin, Y., Li, Z., Chen, Z., Ren, J., & Qu, X. (2013). Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials, 34(11), 2600–2610. https://doi.org/10.1016/j.biomaterials.2013.01.007

Liu, J., Liu, X., Yuan, Y., Li, Q., Chang, B., Xu, L., Cai, B., Qi, C., Li, C., Jiang, X., Wang, G., Wang, Z., & Wang, L. (2018). Supramolecular modular approach toward conveniently constructing and multifunctioning a pH/Redox dual-responsive drug delivery nanoplatform for improved cancer chemotherapy. ACS Applied Materials & Interfaces, 10(31), 26473–26484. https://doi.org/10.1021/acsami.8b05232

Lostale-Seijo, I., & Montenegro, J. (2018). Synthetic materials at the forefront of gene delivery. Nature Reviews Chemistry, 2(10), 258–277. https://doi.org/10.1038/s41570-018-0039-1

Lundquist, C., Loo, C., Meraz, I., Cerda, J., Liu, X., & Serda, R. (2014). Characterization of free and porous silicon-encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Medical Sciences, 2(1), 51–69. https://doi.org/10.3390/medsci2010051

Maeda, H. (2015). Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews, 91, 3–6. https://doi.org/10.1016/j.addr.2015.01.002

Mandal, A. K. (2021). Dendrimers in targeted drug delivery applications: A review of diseases and cancer. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(4), 287–297. https://doi.org/10.1080/00914037.2020.1713780

Manzano, M., & Vallet?Regí, M. (2020). Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 30(2). https://doi.org/10.1002/adfm.201902634

Medina, C., Medina, C., Jacoby, Malinski, Radomski, M. W., & Corbalan, J. J. (2012). Amorphous silica nanoparticles aggregate human platelets: Potential implications for vascular homeostasis. International Journal of Nanomedicine, 631. https://doi.org/10.2147/IJN.S28293

Mi, P. (2020). Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 10(10), 4557–4588. https://doi.org/10.7150/thno.38069

Mohamed, F., Oo, M. K., Chatterjee, B., & Alallam, B. (2022). Biocompatible supramolecular mesoporous silica nanoparticles as the next-generation drug delivery system. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.886981

Munoz, B., Rámila, A., Pariente, J. P., Díaz, I., & Regí, M. V. (2003). MCM-41 organic modification as drug delivery rate regulator. Chemistry of Materials, 15(2), 500–503. https://doi.org/10.1021/cm021217q

Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543–557. https://doi.org/10.1038/nmat2442

Oo, M. K., Alallam, B., Doolaanea, A. A., Khatib, A., Mohamed, F., & Chatterjee, B. (2022). Exploring the effect of glycerol and hydrochloric acid on mesoporous silica synthesis: Application in insulin loading. ACS Omega, 7(31), 27126–27134. https://doi.org/10.1021/acsomega.2c01386

Oo, M. K., & Chatterjee, B. (2019). Issues and challenges of orally-administered mesoporous silica-based drug delivery systems. Journal of Pharmaceutical Sciences and Technology Management, 3(1), 12–22.

Oye, G., Sjoblom, J., & Stocker, M. (2001). Synthesis, characterization and potential applications of new materials in the mesoporous range. Advances in Colloid and Interface Science, 89–90, 439–466. https://doi.org/10.1016/S0001-8686(00)00066-X

Park, S. B., Goldstein, D., Krishnan, A. V., Lin, C. S., Friedlander, M. L., Cassidy, J., Koltzenburg, M., & Kiernan, M. C. (2013). Chemotherapy?induced peripheral neurotoxicity: A critical analysis. CA: A Cancer Journal for Clinicians, 63(6), 419–437. https://doi.org/10.3322/caac.21204

Perera, Y. R., Xu, J. X., Amarasekara, D. L., Hughes, A. C., Abbood, I., & Fitzkee, N. C. (2021). Understanding the adsorption of peptides and proteins onto PEGylated gold nanoparticles. Molecules, 26(19), 5788. https://doi.org/10.3390/molecules26195788

Plaza-Oliver, M., Santander-Ortega, M. J., & Lozano, M. Victoria. (2021). Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Delivery and Translational Research, 11(2), 471–497. https://doi.org/10.1007/s13346-021-00908-7

Raducanu, V.-S., Isaioglou, I., Raducanu, D.-V., Merzaban, J. S., & Hamdan, S. M. (2020). Simplified detection of polyhistidine-tagged proteins in gels and membranes using a UV-excitable dye and a multiple chelator head pair. Journal of Biological Chemistry, 295(34), 12214–12223. https://doi.org/10.1074/jbc.RA120.014132

Kankala, R. K., Han, Y.-H., Na, J., Lee, C.-H., Sun, Z., Wang, S.-B., Kimura, T., Ok, Y. S., Yamauchi, Y., Chen, A.-Z., & Wu, K. C.-W. (2020). Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced Materials, 1907035. https://doi.org/10.1002/adma.201907035

Rosenblum, D., Joshi, N., Tao, W., Karp, J. M., & Peer, D. (2018). Progress and challenges towards targeted delivery of cancer therapeutics. Nature Communications, 9(1), 1410. https://doi.org/10.1038/s41467-018-03705-y

Scicluna, M. C., & Vella-Zarb, L. (2020). Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems. ACS Applied Nano Materials, 3(4), 3097–3115. https://doi.org/10.1021/acsanm.9b02603

Snoussi, Y., Bastide, S., Abderrabba, M., & Chehimi, M. M. (2018). Sonochemical synthesis of Fe3O4@NH2-mesoporous silica@Polypyrrole/Pd: A core/double shell nanocomposite for catalytic applications. Ultrasonics Sonochemistry, 41, 551-561. https://doi.org/10.1016/j.ultsonch.2017.10.021

Stober, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69. https://doi.org/10.1016/0021-9797(68)90272-5

Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51. https://doi.org/10.1016/j.addr.2015.09.012

Sun, L., Wang, D., Chen, Y., Wang, L., Huang, P., Li, Y., Liu, Z., Yao, H., & Shi, J. (2017). Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer. Biomaterials, 133, 219–228. https://doi.org/10.1016/j.biomaterials.2017.04.028

Sun, X., Zhao, Y., Lin, V. S.-Y., Slowing, I. I., & Trewyn, B. G. (2011). Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis. Journal of the American Chemical Society, 133(46), 18554–18557. https://doi.org/10.1021/ja2080168

Tawfeek, G. M., Baki, M. H. A., Ibrahim, A. N., et al. (2019). Enhancement of the therapeutic efficacy of praziquantel in murine Schistosomiasis mansoni using silica nanocarrier. Parasitology Research, 118(12), 3519-3533. https://doi.org/10.1007/s00436-019-06475-8

Tharkar, P., Varanasi, R., Wong, W. S. F., Jin, C. T., & Chrzanowski, W. (2019). Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Frontiers in Bioengineering and Biotechnology, 7. https://doi.org/10.3389/fbioe.2019.00324

Vallet-Regí, M., Balas, F., Colilla, M., & Manzano, M. (2008). Bone-regenerative bioceramic implants with drug and protein-controlled delivery capability. Progress in Solid State Chemistry, 36(3), 163–191. https://doi.org/10.1016/j.progsolidstchem.2007.10.002

Vivero?Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2010). Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 6(18), 1952–1967. https://doi.org/10.1002/smll.200901789

Wang, J., Wu, X., Shen, P., Wang, J., Shen, Y., Shen, Y., Webster, T. J., & Deng, J. (2020). Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. International Journal of Nanomedicine, Volume 15, 1903–1914. https://doi.org/10.2147/IJN.S239751

Wang, Y., Ding, X., Chen, Y., Guo, M., Zhang, Y., Guo, X., & Gu, H. (2016). Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials, 101, 207–216. https://doi.org/10.1016/j.biomaterials.2016.06.004

Wang, Y., & Kohane, D. S. (2017). External triggering and triggered targeting strategies for drug delivery. Nature Reviews Materials, 2(6), 17020. https://doi.org/10.1038/natrevmats.2017.20

Wang, Y., Sun, L., Jiang, T., Zhang, J., Zhang, C., Sun, C., Deng, Y., Sun, J., & Wang, S. (2014). The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Development and Industrial Pharmacy, 40(6), 819–828.

Wang, Y., Zhang, F., Wang, Y., Ren, J., Li, C., Liu, X., Guo, Y., Guo, Y., & Lu, G. (2009). Synthesis of length controllable mesoporous SBA-15 rods. Materials Chemistry and Physics, 115, 649–655.

Wu, H., Li, F., Wang, S., Lu, J., Li, J., Du, Y., Sun, X., Chen, X., Gao, J., & Ling, D. (2018). Ceria nanocrystals decorated mesoporous silica nanoparticle-based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials, 151, 66–77. https://doi.org/10.1016/j.biomaterials.2017.10.018

Wu, M., Lin, X., Tan, X., Li, J., Wei, Z., Zhang, D., Zheng, Y., Zheng, A., Zhao, B., Zeng, Y., Liu, X., & Liu, J. (2018). Photoresponsive nanovehicle for two independent wavelength light-triggered sequential release of P-gp shRNA and doxorubicin to optimize and enhance synergistic therapy of multidrug-resistant cancer. ACS Applied Materials & Interfaces, 10(23), 19416–19427. https://doi.org/10.1021/acsami.8b03823

Wu, S. H., Mou, C. Y., & Lin, H. P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. https://doi.org/10.1039/c3cs35405a

Xie, Y., Kocaefe, D., Chen, C., & Kocaefe, Y. (2016). Review of Research on Template Methods in Preparation of Nanomaterials. Journal of Nanomaterials, 2016.

Yang, B., Chen, Y., & Shi, J. (2018). Exogenous/endogenous?triggered mesoporous silica cancer nanomedicine. Advanced Healthcare Materials, 7(20). https://doi.org/10.1002/adhm.201800268

Yang, L., Yin, T., Liu, Y., Sun, J., Zhou, Y., & Liu, J. (2016). Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomaterialia, 46, 177–190. https://doi.org/10.1016/j.actbio.2016.09.010

Lin, Y. S., & Haynes, C. L. (2010). Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. Journal of the American Chemical Society, 132, 4834. https://doi.org/10.1021/ja910846q

Yu, F., Wu, H., Tang, Y., et al. (2018). Temperature-sensitive copolymer-coated fluorescent mesoporous silica nanoparticles as a reactive oxygen species activated drug delivery system. International Journal of Pharmaceutics, 536(1), 11-20. https://doi.org/10.1016/j.ijpharm.2017.11.025

Zhang, M., Gao, S., Yang, D., Fang, Y., Lin, X., Jin, X., Liu, Y., Liu, X., Su, K., & Shi, K. (2021). Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B, 11(8), 2265–2285. https://doi.org/10.1016/j.apsb.2021.03.033

Zhang, W., Zheng, N., Chen, L., Xie, L., Cui, M., Li, S., & Xu, L. (2018). Effect of shape on mesoporous silica nanoparticles for oral delivery of indomethacin. Pharmaceutics, 11(1), 4. https://doi.org/10.3390/pharmaceutics11010004

Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science, 279(5350), 548–552. https://doi.org/10.1126/science.279.5350.548

Downloads

Published

2024-07-31

How to Cite

Zohera, F., Mohamed, F., Abul Kalam Azad, & May Kyaw Oo. (2024). Fabrication, Applications and Future Prospects of Mesoporous Silica Nanoparticles. Journal of Pharmacy, 4(2), 209–225. https://doi.org/10.31436/jop.v4i2.264

Issue

Section

Review Articles