ELECTRICITY GENERATION OF ELECTRIC COASTER IN TRAPPING SOLAR HEAT

Electric generation

المؤلفون

DOI:

https://doi.org/10.31436/ijiok.v1i2.12

الكلمات المفتاحية:

Electricity generation، Energy saving.، Lithium thin plate، Carbon fiber، Epoxy resin

الملخص

ABSTRACT:  Environmental concerns and shortages of electricity and battery capacity limitations have prompted efforts aimed at the mass production of biodegradable materials. Renewable energy from solar trap heat is the optimal way to prevent climate change and decarbonization. The new technology of the EV body made with Al2O3 Epoxy Resin (ER) filler sandwiched by Carbon Fiber and Lithium thin plates is an advanced technology used to generate electricity by trapping solar heat. The developed laboratory-scale model car body will be able to generate 15% energy from the 8.46 kWh battery pack and reduce 20% of the 30-kWh traction power by reducing 15% of the car's total weight of 1800 kg. Furthermore, the proposed body is very environmentally friendly as it can be easily recycled for new products. Based on the overall benefits, the proposed car body has the potential to reduce oil dependence and environmental emissions. However, the main limiting factors are thermal behavior and ionic conductivity at high temperatures.

ABSTRAK: Kebimbangan alam sekitar dan kekurangan tenaga elektrik dan had kapasiti bateri telah mendorong usaha yang bertujuan untuk pengeluaran besar-besaran bahan terbiodegradasi. Tenaga boleh diperbaharui daripada haba perangkap suria adalah cara optimum untuk mencegah perubahan iklim dan penyahkarbonan. Teknologi baharu badan EV yang dibuat dengan pengisi Al2O3 Epoxy Resin (ER) diapit oleh plat nipis Serat Karbon dan Litium ialah teknologi canggih yang digunakan untuk menjana elektrik dengan memerangkap haba suria. Badan kereta model skala makmal yang dibangunkan akan dapat menjana 15% tenaga daripada pek bateri 8.46 kWj, dan mengurangkan 20% daripada kuasa cengkaman 30 kWj dengan mengurangkan 15% daripada jumlah berat kereta sebanyak 1800 kg. Tambahan pula, badan yang dicadangkan itu sangat mesra alam kerana ia boleh dikitar semula dengan mudah untuk produk baharu. Berdasarkan manfaat keseluruhan, badan kereta yang dicadangkan itu berpotensi untuk mengurangkan pergantungan minyak dan pelepasan alam sekitar. Walau bagaimanapun, faktor pengehad utama ialah kelakuan terma dan kekonduksian ionik pada suhu tinggi.

المراجع

Liu P, Sherman E, Jacobsen A. (2009) Design and fabrication of multifunctional structural batteries. Journal of Power Sources Vol.189, pp.646–650. DOI: https://doi.org/10.1016/j.jpowsour.2008.09.082

Han Z, Fina A. (2011) Thermal conductivity of carbon nanotubes and their polymer nano composites: a review. Prog Polym Sci, Vol.36(7), pp.914–44. DOI: https://doi.org/10.1016/j.progpolymsci.2010.11.004

Yang F, Zhao X, Xiao P. (2010) Thermal conductivities of YSZ/Al2O3 composites. J Eur Ceram Soc, Vol30(15):3111–6. DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.07.007

Hossain S, Kim YK, Saleh Y. (2006) Overcharge studies of carbon fiber composite-based lithium-ion cells. J. of Power Sources, Vol.161, pp.640–647. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.111

Flandrois S, Simon B. (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon, Vol 37, pp.165–180. DOI: https://doi.org/10.1016/S0008-6223(98)00290-5

Imanishi N, Kashiwagi H, Ichikawa T. (1993) Chargedischarge characteristics of mesophase-pitch-based carbon fibers for lithium cells. Journal of the Electrochemical Society 140: 315–320. DOI: https://doi.org/10.1149/1.2221044

Ataur R, Kaw MA. (2021) Development of solar supercapacitor by utilizing organic polymer and metal oxides for subsystem of electric vehicle. Journal of Material Research Express. Vol.8(2021), 8 (2021) 125301 DOI: https://doi.org/10.1088/2053-1591/ac3ce9

Christodoulou L, Venables JD. (2003) Multifunctional material systems: the first generation. Journal of the Minerals, Metals and Materials Society, Vol. 55, pp. 39–45. DOI: https://doi.org/10.1007/s11837-003-0008-z

South JT, Carter RH, Snyder JF. (2005) Multifunctional power-generating and energy-storing structural composites for US army applications. Materials Research Society Symposium Proceedings, Vol. 851, pp.139–150. DOI: https://doi.org/10.1557/PROC-851-NN4.6

Thomas JP, Qidwai MA. (2004) Mechanical design and performance of composite multifunctional materials. Acta Materialia, Vol. 52, pp.2155–2164. DOI: https://doi.org/10.1016/j.actamat.2004.01.007

Shaheer K, Rahman A. (2021) The impact of ZnO/PVA solar film on the enhancement of organic solar panel efficiency. Journal of Material Research Express, Vol. 8 (2021), pp.1-12, IOP Science

Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z. (2009) Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers. Appl Phys Lett, Vol.95(22).. DOI: https://doi.org/10.1063/1.3271028

Li TL, Hsu SLC. (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B, Vol.114(20): 6825–9. DOI: https://doi.org/10.1021/jp101857w

Zhou T, Wang X, Liu X, Xiong D. (2010) Improved thermal conductivity of epoxy composites using a hybrid multiwalled carbon nanotube/micro-SiC filler. Carbon , Vol.48(4):1171–6. DOI: https://doi.org/10.1016/j.carbon.2009.11.040

Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X. (2010) Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon, Vol.49(2), pp.495–500. DOI: https://doi.org/10.1016/j.carbon.2010.09.047

Tanaka T. (2005) Dielectric nanocomposites with insulating properties,"Dielectrics and Electrical Insulation, IEEE Transactions on , vol.12,no.5, pp. 914- 928. DOI: https://doi.org/10.1109/TDEI.2005.1522186

Qiu A, Fu K, Lin W, Zhao C, Tang Y. (2014) Modelling low-speed drop-weight impact on composite laminates, Materials and Design. In press DOI: https://doi.org/10.1016/j.matdes.2014.04.041

Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. (2007) Graphite nanoplatelet–epoxy composite thermal interface materials. J Phys Chem C, Vol.111(21):7565–9. DOI: https://doi.org/10.1021/jp071761s

Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC. (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites. Adv Mater, Vol20(24):4740–4. DOI: https://doi.org/10.1002/adma.200800401

Shahil KMF, Balandin AA. (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett, Vol.12(2):861–7. DOI: https://doi.org/10.1021/nl203906r

Rahman Ataur and Shaheer khan (2023) Characterization and Application of Nano-composite Zinc Oxide /Poly Vinyl Alcohol thin-film in Solar Cell Performance Enhancement. Journal of Journal of Mechanical Science and Technology, Springer, 36(9).

Amaral, F.A., Dalmolin, C., Canobre, S.C., Nerilso, B., Rocha, F.R.C., Biaggio, S.R. (2007) Electrochemical and physical properties of poly based gel electrolytes for lithium ion batteries. J. power Sources, Vol.164, No.1, pp.378-7753. DOI: https://doi.org/10.1016/j.jpowsour.2006.10.049

Li Z, Su,G. Wang X., Gao D.(2005) Micro-porous P based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ionics, Vol.176, No.(23-24), pp.1903-1908. DOI: https://doi.org/10.1016/j.ssi.2005.05.006

Manual, S.A. Nahm, K.S. Kumar, T. Kulandainathan, M. Ravi, G. Wilson, J. (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P blends. Electrochimi Acta, Vol.48, No.2, pp.205-209. DOI: https://doi.org/10.1016/S0013-4686(02)00603-5

Rahman, Ataur., Farhana, Nur., Hawlader, MNA., Rafia, Afroz. (2014) Fuzzy controlled evaporative battery thermal management system for EVs/HEVs. International Journal of Electric and Hybrid Vehicle, Enderscience Publisher Vol. 2014. DOI: https://doi.org/10.1504/IJEHV.2015.068935

Gacitua W, Ballerini A, Zhang J. (2005) Polymer nanocomposites: Synthetic and natural fillers a review. Maderas Cienc. Y Tecnol. 2005, 7, 159–178. DOI: https://doi.org/10.4067/S0718-221X2005000300002

Rahman A, Kaw MA, Ihsan S, Raja AS, Qubeissi M, Aljarrah, MT. (2023) Solar Energy Dependent Supercapacitor System with ANFIS Controller for Auxiliary Load of Electric Vehicles. Energies 2023, 16, 2690 DOI: https://doi.org/10.3390/en16062690

التنزيلات

منشور

2024-06-05

كيفية الاقتباس

Rahman, A., & Ihsan, S. (2024). ELECTRICITY GENERATION OF ELECTRIC COASTER IN TRAPPING SOLAR HEAT: Electric generation. International Journal on Integration of Knowledge, 1(2), 1–14. https://doi.org/10.31436/ijiok.v1i2.12

إصدار

القسم

Articles