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ABSTRACT: In 5G communications, higher data rates and lower latency are needed due to 

the high traffic rate. Though resource wastage is avoided by secure slicing, sliced networks 

are exploited by DDoS attackers. Thus, in the present paper, traffic-aware setting up is 

PRESENTED for resource allocation and secure slicing over the virtualization of 5G 

networks enabled by software-defined network/network functions. In the proposed method 

(called T-S3RA), to authenticate user devices, Boolean logic is used with key derivation based 

on passwords. Moreover, the traffic arrangement is based on the 5G access points. To 

implement secure resource allocation and network slicing, deep learning models are used. 

Renyi entropy computation is employed to predict the DDoS attackers. Through the 

experimental results, the effectiveness of the presented approach is proved. 

ABSTRAK: Dalam komunikasi 5G, kerana kadar lalu lintas yang tinggi, kadar data yang 

tinggi dan latensi rendah diperlukan. Walaupun pemotongan yang selamat dapat mengelakkan 

pembaziran sumber daya, penyerang DDoS dapat mengeksploitasi rangkaian yang dihiris. 

Makalah ini mencadangkan penjadwalan yang peka lalu lintas untuk pemotongan selamat dan 

peruntukan sumber melalui rangkaian 5G yang dibolehkan virtualisasi fungsi rangkaian / 

rangkaian yang ditentukan perisian. Dalam pendekatan yang dicadangkan (disebut T-S3RA), 

peranti pengguna disahkan menggunakan logik Boolean dengan derivasi kunci berdasarkan 

kata laluan. Di samping itu, lalu lintas dijadualkan di titik akses 5G, pemotongan rangkaian 

aman dan peruntukan sumber dilaksanakan menggunakan model pembelajaran mendalam, 

dan penyerang DDoS diramalkan melalui perhitungan entropi Renyi. Hasil eksperimen 

mengesahkan keberkesanan pendekatan yang dicadangkan. 

KEYWORDS: Dynamic offloading; Deep learning; Resource allocation; Network slicing; 

Traffic scheduling 

1. INTRODUCTION

Network slicing as a critical issue should be stated for 5G networks beneath a single

physical infrastructure. Generally, network slicing is determined as choosing slices and 

allocation of resources appropriately definite for each user [1–4]. Presently, higher service-

satisfaction rates are required by network equipment. For instance, for a 4K ultra HD video 

streaming application, it is essential to meet higher service needs like high throughput, high 

reliability, low latency, and higher storage space. Larger throughput and limited delay are 

required by this application thus implementing resource allocation and network slicing. 

Resource allocation and joint network slicing were presented as the main solution for 

meeting the requirements of users’ quality of service (QoS). Using the service type is among 

the greatest methods to create a slice. Data traffic includes the type of service used for 

configuring the network slicing. Moreover, a quick and dynamic response should be offered to 

satisfy the constraints of service level agreement (SLA). Mainly, the present solutions for 
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resource allocation and network slicing are expensive computationally while not supporting 

the mixed slice requests [5,6].  

 Appropriate support is provided by a software-defined network (SDN) for resource 

allocation and network slicing since it includes the functionality of processing the slice requests 

and performing data traffic arrangement [7]. SDNs have various benefits based on network 

slicing. Moreover, they are extensively researched presently for numerous applications. These 

advantages include reliable communication, long-distance, urgent solutions, and 

communication for optimizing problems [8–10]. For similar cases, a heuristic algorithm is 

utilized. Though computations required a huge deal of time in these algorithms, thus, they are 

heavily complex. 

Poor results are obtained by the present resource-allocation and network-slicing methods 

owing to the massive arrival rate of resource requests, numerous network slice requests, and 

high data traffic within a network slice [11]. Moreover, concentrated SDN controllers are also 

influenced since they behave as a single-point failure not able to control most urgent service 

requests (ultralow latency). Through a multi-controller SDN environment, these issues are 

solved. The final decision is made by the controller in SDN/network function virtualization 

(NFV)-based slicing to appropriately direct the slices [12-15]. 

The present study aims to handle the massive heterogeneous services from diverse tools 

with 5G networks connections [16–22]. Currently, three key services are evolved in 5G 

including ultra-reliable low-latency communication (URLLC), massive machine-type 

communication (mMTC), and enhanced mobile broadband (eMBB) (Table I). 

The QoS and security requirements of networks were increased by integrating SDN/NFV 

and 5G. Resource allocation and network slicing in a 5G network enabled by SDN/NFV are 

challenging since the optimum set of resources and proper slice must be defined. Resource 

allocation and network slicing are implemented in most studies for a few heterogeneous 

services while considering the very restricted metrics. Furthermore, fast resource allocation 

and network slicing are required owing to various throughputs, mobilities, data rates, and 

delays in different services. The QoS can be improved by a universal system. 

For proper resource allocation and slice selection, a concentrated SDN controller is not 

practicable since slice privacy and security are not considered and there is higher participation 

of DDoS attackers. Thus, massive quantities of traffic are sent to a particular slice by these 

attackers. Nevertheless, the QoS requirement for UE can not be satisfied by the secure network 

slicing alone since it is essential to serve the high-priority traffic first in terms of the type of 

service. 

The slice network is performed by the global controller while allocating optimal resources 

to achieve diverse service needs from users. The present study mainly includes the following 

points.  

The 5G AP audits by each authority in a VAP to insert, eliminate, and adjust the operations. 

Using a password-based key derivation function 2 (PBKDF2) in terms of Boolean logic is 

considered along with three input parameters including a physically unclonable function 

(PUF), secret key, and timestamp. An asymmetric queue model was used to perform traffic 

scheduling oriented by Bernoulli’s theorem. Packet delay, data rate, and packet length were 

used to schedule the traffic flow. Two high- and low-priority queues were fixed within the 5G 

AP. Each queue includes asymmetric service rates based on the arrival rate. The international 

mobile subscriber identity, traffic type, fair SLA, device mobility, and slice capacity are 

considered in network slicing.  
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The present work primarily focused on SLA constraints between the service provider and 

user leading to the fair SLA while slicing the network. First, it is tried to calculate the service 

availability ratio (SAR), throughput ratio (TR), response time ratio (RTR), and service 

reliability ratio (SRR) accompanied by the fairness or weight for each service. To perform 

resource allocation, HopFieldNet is used as a quick neural network to find resources for each 

slice. Through the proposed dynamic-flow offloading outline at the local control plane, 

overloading at network slices is handled. Using a fast-weighted bipartite graph ( ) was 

considered in terms of transmission rate, switch service capacity, and loss rate to map multiple 

flows to the optimal switches enhancing the network reputation. Packet classification through 

Renyi entropy was run along with the device authentication. The bandwidth usage is estimated 

here, for the switches. Ultimately, the NS3.26 simulator was used for the experiments to assess 

the proposed scheme exhibiting highly satisfactory performance compared to the formerly 

presented schemes based on several metrics like throughput, response time, latency, packet loss 

ratio, packet transmission ratio, bandwidth consumption, slice acceptance ratio, and slice 

capacity. 

The rest of this paper is set as follows. An earlier study on resource allocation and network 

slicing is provided in Section 2 to recognize the research gap. The main problems explored 

from the present studies are highlighted in Section 3. The presented traffic-aware scheduling is 

detailed in Section 4 for resource allocation and secure slicing (T-S3RA) architecture along 

with its essential algorithms. The proposed architecture is compared in Section 5 with former 

methods in terms of the experimental results. Finally, our contributions are summarized in 

Section 6 while outlining future improvements. 

2. RELATED WORK 

2.1 Secure Network Slicing 

Multiple users are allowed to reach a single network followed by authentication through 

secure slicing. Moreover, users’ performances on the slice are assessed by verification of 

attributes like the strength of passwords and the existence of malware [23]. In the study of 

Wang et al. [24], mitigation of DoS attacks in an SDN was focused on through switch 

bandwidth congestion prediction. Specifically, a complete judgment score was determined for 

each switch representing attack severity. Through trust values, multiple buffer queues the 

priority can be managed by the manager considering various users’ priorities. A weighted 

round-robin algorithm was used to schedule flow requests from users. The compromises by 

DoS attackers are estimated, however, through authentication of the users, attack prevention is 

achieved. Thus, attackers are easily eliminated before overloading the controller. 

The VIKOR multicriteria decision-making approach was proposed by Porambage et al. [25] 

for network slicing within a 5G environment to find node significance (topology and resource 

attributes) and thus rank the nodes. A candidate physical path is defined among the slice nodes, 

for maximizing the slice acceptance ratio. Though, there is a major drawback in VIKOR that 

is the marginal slice acceptance ratio, which should be higher for the high-priority traffic.  

Accessing the slice by third-party application services, secure keying is made [26], which 

ensures consent from the monitored devices as well as security features for the keying outline. 

Hence, the security feature is demonstrated by establishing a 5G-services. The key distribution 

server initially creates the cryptographic keys. The ELGamal Cryptosystem was proposed for 

a key generation where two sets of keys are generated including private and public keys. The 

resources are made here for key generation. 

2.2 Resource allocation and network slicing 
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The optimal workload allocation was proposed by Ma et al. [27] for distributed 5G-based 

SDN/NFV networks. An end-to-end network slicing architecture was designed in this method 

for supporting several services like URLLC and eMBB. Moreover, through slicing the requests 

from clients in the integrated environment (edge computing, NFV, and SDN), the network 

operating cost is decreased. Network slicing was performed by Dawaliby et al. [28] in a large-

scale Internet of Things (IoT) environment (long-range extensive area network). In this work, 

three slices of the network were segregated including the reliability and urgency-aware slice, 

best-effort slice, and reliability-aware slice. First, one-to-many matching (defined by the 

number of IoT devices allocated to the virtual slices) was used to implement cooperative 

slicing. Then, a one-to-one matching game was used to allocate the resources for each slice 

(inter-slice resource allocation). The higher processing time is used by the coalitional 

multigame theory resulting in higher computational complexity. 

Packet-based data traffic scheduling was suggested to enhance resource assignment and 

sharing in 5G slice networks [29]. Two operations modes are utilized including dynamic 

sharing resource (DSR) and static sharing resource (SSR). The allocated capacity weight is 

determined to assign the resource for each slice and thus the allocated one. The fairness for 

resource distribution per slice is calculated in the final analysis. A global network controller is 

needed for operating massive types of slices like popular, sensitive, and heavy slices. The radio 

resource management (RRM) was investigated by Koutlia et al. [30] for multiple slice 

management. Using the RRM function here, the radio resources are divided and allocated. 

Slicing and allocation provisioning were proved by an interaction between the SD-RAN and 

eNB controller. The QoS requirements for real-time traffic are not met by a single controller 

while not suiting the complex application setups (Drone Control and AR/VR). A slice 

management scheme was proposed by An et al. [31] to assign resources in terms of priority. In 

this scheme, forwarding high-priority slice requests is performed while transmitting the lower-

priority slices and shortest paths to other paths. They used 200 nodes to perform the 

experiments. Through a grid network topology, the nodes were deployed. The average 

throughput for slices was more than 6%, 13%, and 7% in the final analysis while minimizing 

the delays of the slices by 11%–14%. The shortest path is used by the flow (high-priority) 

forwarding within the data plane although it is not available for all cases. Thus, it is essential 

to install the corresponding flow in the controller when there is no consistency between flow 

and a flow table. Hence, a bandwidth scarcity problem is a resultant for users under static 

resource assignment. 

A network slice embedding model was presented by Tang et al. [7] in terms of reliability. 

The number of slice requests is increased by the model while reducing the failure rate of the 

network slices simultaneously. A Lyapunov optimization model was used in this model to 

allocate resources and ensure queue stability. The network stability and reliability were 

guaranteed while effectively improving the network throughput. However, obtaining an 

abundance of network slices is difficult with lower interoperability between the SDN/NFV and 

5G network.  

Service function chaining is utilized for network slicing [32], in which a set of service 

function chains is included in each slice to deal with any traffic per slice. Then, the trade-offs 

between slicing and execution runtime are examined examining by designing a greedy-based 

heuristic algorithm. Ultimately, the required bandwidth and delay are obtained through an 

optimization model. The mobility of network slices is not taken into account, which reduces 

the QoS and QoE.  

A scheme was developed by Alfoudi et al. for network slicing resource management 

(NSRM) [33] for the allocation of resources for each slice within a network. An LTE network 
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was considered in this work for various slice allocations and fair distribution of bandwidth 

among slices. Deploying the controller, all the slices are handled by the LTE slice controller 

for each slice. The radio network resources are assigned through the LTE slice controller by a 

virtual eNodeB. It is very difficult to dynamically provision the slice requests. For instance, 

large slice request handling is required by the Industry 4.0 application.  

Narmanlioglu et al. conducted service-aware multi-resource allocation for cellular networks 

defined by software [34]. In this work, joint network allocation was demonstrated along with 

scheduling the available network resources for determining the network slices. Based on the 

SLA priorities and constraints, network resources are specifically provided. For each priority, 

the analytic hierarchy process (AHP) is utilized to calculate the resources (latency, throughput, 

reliability, and storage). Through experiments, they evaluated the method for vertical 

subscribers and industries cost-efficiently. The network slice capacity is the main factor to 

determine the needed resources. Though, AHP is not able to concurrently support multiple 

traffic flow resource allocation.  

The vehicular ad hoc network environment was examined by a dynamic end-to-end slicing 

method supporting 5G communications [35]. Two kinds of slice services were examined 

including Video and Web. Resources were assigned for network slices in a single physical 

network infrastructure. In both the control and data planes, the handling of different services 

from numerous users is supported through virtualized network functionality customization. 

However, high throughput is not provided by this end-to-end method for limited latency service 

types. 

Two eMBB and V2X services were examined by Albonda and Pérez-Romero [36]. They 

used two approaches of heuristic algorithm and reinforcement learning for resource allocation 

and network slicing for various slices. According to the simulation results, the latency is 

reduced by 0.18 s (by 0.26 s for a fixed slicing ratio). Though, multiple traffic classes are not 

supported by this approach in each slice. Furthermore, latency can be further reduced by a 

global controller for each service type. 

An optimal and quick response method is presented for resource slicing within heterogeneous 

cellular networks [37]. The real-time advent of slice requests is captured first by this technique 

through a semi-Markov decision procedure (deep double dueling) to predict the service 

resources and time. Through several experiments, the performance of the presented deep 

dueling method was demonstrated for resource slicing. Several challenges are caused by large 

and dynamic network slices in the control and data plane. Such challenges are addressed by 

presenting load balancing amongst multiple network service chains. Hence, a novel concept 

was used (point of existence) to solve the scalability problem while accepting only limited slice 

users [38–40]. 

3. PROBLEM DEFINITION 

Resource allocation and network slicing are run in SDN/NFV-based 5G networks based on 

the service wants of devices or users [41–43]. Massive service requests from the user can be 

handled through a multiclass queuing and traffic analysis model. Low-complexity traffic 

predictors are employed utilizing a soft gated recurrent unit (GRU) to allocate the resources 

through deep neural networks (DNNs). Moreover, a multistage analysis is conducted for three 

various slices (URLLC, mMTC, and eMBB) to carry out M/M/n/K-based queuing.  

These studies have the following limitations: First, they are oriented by the load, thus, non-

real-time traffic for scheduling before real-time traffic is caused by the high response time for 

processing high-priority class packets. Second, based on a first-come-first-serve (FCFS) 

Acc
ep

ted
 

Une
dit

ed
 Vers

ion

Early Access Date: 21 2021



IIUM Engineering Journal, Vol. 23, No. 2, 2022 Ramadhan 
https://doi.org/10.31436/iiumej.v23i2.1763 

 

 

protocol, particular slices are scheduled thus further increasing the response time leading to 

poor QoS for received requests. Third, a single point of failure occurs in an SDN, when it is 

not possible to handle the requests from various users through a single controller. Forth, the 

response time is incremented by running both DNN and GRU for more realistic and QoS-

constrained traffic. Furthermore, a huge deal of energy and time is used by the DNN. Fifth, a 

random seek pattern is run by the FCFS since requests are not reordered by the slice for 

minimizing service delay. Besides, fair level SLA constraints are not used by the queuing 

theory. Since the service must be provided with an availability of 99.99%, ensuring service 

timeouts of less than 0.01% and completing the 99.99% of the services are essential within the 

resources. Additionally, resources are not distributed properly when utilizing FCFS for 

scheduling. 

For embedded services, a dynamic flow migration was proposed under SDN/NFV-aided 5G 

networks to decrease the dynamic traffic load per slice [44]. To address this issue, a heuristic 

algorithm was used. This approach has the following drawbacks: (1) Adaptive flow migration 

is needed owing to the limited performance of the Poisson traffic model. (2) An optimal 

solution was required by the routing path for flow migration and in former approaches, delay-

sensitive traffic cannot be run. (3) The heuristic algorithm is not able to present an optimal 

solution when arriving at an unexpected flow at the controller. In the present work, the above-

mentioned problems are resolved through network slicing, dynamic offloading, resource 

allocation, security, as well as packet classification. 

4. SYSTEM MODEL 

To design the presented T-S3RA within an SDN/NFV-permitted 5G network, the mobile 

device authentication processing abilities were used along with network slicing, traffic 

scheduling, as well as dynamic offloading, and resource allocation. 

4.1 Network Overview 

Designing the T-S3RA model for resource allocation and secure network slicing included a 

global control plane, local control plane, user plane, and data plane. Some entities are contained 

in the suggested T-S3RA model such as tools ( ), VAP , 5G APs (

), controllers (GC), switches (  and ), and some LCs (

. The secure credentials are submitted in the devices to the 5G AP. Generally, there 

are limited components at the data and control planes based on the resources. Moreover, it is 

essential to use these resources for sending and receiving responses from users as well as for 

action processing. The VA is removed when not needed. Hence, using the multi controllers 

resolves the single-controller-failure problem as a result of using both virtual and physical 

switches. Hence, the overload problem is solved. 

In network slicing, more packet losses and delays are induced by massive traffic. Thus, 

slicing is performed while scheduling the traffic and allocating the resources through deep 

learning methods. Through dynamic offloading actions, imbalance issues are avoided. Via 

various credentials, these actions are kept in the data plane while considering the resource 

wastage problem. Hence, through entropy calculations, DDoS attackers are detected arriving 

at the switches.  

Fig. 1 shows the proposed T-S3RA architecture. The main network entities include: (1) All 

IoT tools with access to the network through the 5G communications network are known as 

the tools. Such devices are dynamic in movement and heterogeneous in nature. Higher 

coverage is required to connect them to the 5G AP. All tools are not approved, and unauthorized 
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user participation is also possible. (2) 5G AP armed with higher communication coverage with 

a higher data rate, lower latency, and higher throughput. (3) VAP is a pool comprising some 

virtual authorities not a single entity. It is often denoted as a specific entity balancing the 

authentication process. The 5G AP handles the VA creation and deletion process. (4) Switches 

that are commonly used in the data plane and function by matching the incoming flow with the 

flow table thus performing the actions. (5) Controllers that are distributed and deployed within 

the control plane for resource allocation and network slicing. Multiple controllers are utilized 

in this work to prevent the problem of a single point of failure. 

4.2 Device Authentication 

The 5G AP audits each authority with a charge for inserting, deleting, and modifying the 

operations, in the VAP. The PBKDF2 is utilized for authentication using three input parameters 

including PUF 𝐼? 𝑢𝑓, secret key , and Timestamp —. The request is accepted for the three 

valid parameters if not, it is not recognized and ended. The operations are conducted in the 

Boolean logic function. 

PBKDF2 is a function based on the key made by RSA Labs overwhelming the brute force 

attacks resultant from weak user passwords. The following parameters are used to derive a 

PBKDF2: an iteration count, ; a pseudorandom function, ; a password, ; a salt, ; an 

output-derived secret key, , and a selected output key length, . 

A  of arbitrary length is driven by PBKDF2. In particular, by the PBKDF2, several 

possible blocks  are generated required for covering the output secret key length. For 𝑃𝑅𝐹 

iteration, each block,  is calculated through the count, . Any number of iterations can be 

added for a large secret key length. The inputs are the user password in PBKDF2, l salt 

values, ; iteration count, ; ; timestamp, , and selected output key length, . A secret 

key,  yields the output. 

 (1) 

where  denotes all security credentials’ concatenation. Here, two processes of enrollment and 

verification handle the PUF-based authentication. In the enrollment, all response and challenge 

pairs of the device are stored by the VA, which is verified when entering a device into the 

network. The device ID is received by the verifier to determine the random 

. The equivalent response is calculated for the issued challenge. The 

verifier examines the validity of the response in the database and the made response,  is made 

for the valid cases. 
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Fig.1. The system architecture [1] 

Here, the Boolean logic operator is represented as  and stated as 

 .  (2) 

4.3. Traffic Scheduling 

Through traffic scheduling in the 5G AP, congestion was avoided at the SDN controller. 

Here, the devices' traffic flows are categorized and arranged through an asymmetric queue 

model operating in terms of Bernoulli’s theorem [45,46]. Using three parameters, traffic flow 

was scheduled including packet delay 𝐼?𝑑, data rate , and packet length . Thus, the total 

queuing service rate is: 

 + . (3) 

A zero-packet loss rate is obtained by focusing on the adaptive queue within the two queues. 

Therefore, HP’s service rate is  by reaching and exceeding this value, while the queue 

is still in process. 
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A discrete-time system was considered in this study to schedule services dynamically 

arriving e for slicing requests. Regarding the type of slots and service, all arriving requests 

were diverse. A random variable ɣ(T) was defined to represent the queue current state as:   

ɣ(T)   (4) 

4.4. Resource allocation and network slicing 

The Network slice selection entities (NSS s) were fed in the GC to slice the network via 

SliceNet, which is a light and faster CNN outperforming WaveNet, traditional CNNs, and 

ByteNet. 

Service Type 𝔰𝑡, Fair SLA 𝔣𝑆𝐿𝐴, Slice Capacity 𝕊𝒸 𝐼𝑀𝑆𝐼, and Device mobility 𝑑𝔐 were all 

taken into account for slicing the network. This work primarily focused on SLA constraints 

between the service provider and user leading to  while slicing the network. Followed by 

the fairness (weight) for each service, RTR, SAR, TR, and SRR were calculated.  

Forwarding a service request is performed to the controller through the 5G AP over network 

slicing for a tool. The presented SliceNet is sated as a mapping from the input layer to the 

output layer as: 

, (5) 

In which  represents the tool i. The above-mentioned parameters are inserted as inputs into 

the presented SliceNet where the input encoder, decoder, and I/O mixer, are the key 

components.  

The input is obtained from the devices by a convolutional module in three stages of 

separable conv, ReLU activation, and the layer normalization. The hidden units are normalized 

and calculated layer-wise in the normalization. Generally, the conv_module is written as: 

, (6)                    

Thus, the conv_module is achieved by stacking 4 convolutional phases:  

,  (7) 

,  (8)                           

,  (9)                        

, (10)              

  

, (11) 

 

where  represents the number of hidden units, and 0.5 is the learning rate. 

The service requirements and input feature vector similarities are calculated based on the 

service type. Two convolution steps are conducted by the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function in this module: 

,  (12)  

  (13) 
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Ultimately, the three components’ structure was detailed including I/O mixer, input encoder, 

and decoder. The concatenation of all the aforementioned components makes the output 

embedding as: 

  = ,  (14) 

 .  (15)     

Ultimately,  is obtained in the output layer, which  is 

determined as the slice selection indicator. Thus,  denotes three kinds of services including 

eMBB, mMTC, and URLLC with different resource configurations. Hence, each service type 

is represented  accompanied by the specified network slice. To run resource 

allocation, HopFieldNet is used as a quick neural network to find the resource for each slice. 

Considering 𝑆𝐼𝑁𝑅, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡,  𝔣𝑆𝐿𝐴, 𝕊𝒸, arrival rate 𝐴𝑟, and slice value 𝑠𝑣, the resources 

were determined for each slice request. Here, the resources are assigned for three various 

processes including computation, communication, and caching as 𝒸𝑗, , , respectively.  

HopFieldNet is an artificial neural network (ANN) comprising nodes on a single layer. The 

input nodes in HopFieldNet are synchronously updated in terms of clock time variations. Here, 

there are the contributing nodes with the connectivity in terms of the defined weight values. 

The outcomes from network slices are used by HopFieldNet as input to compute the resources 

for the three groups of slices as URLLC, mMTC, and eMBB. The performance of opinion 

loops intended in this network is based on the capability of enriching knowledge, which is 

operative to resolve complicated computational problems. Designing HopFieldNet with a 

single layer of input nodes linked to other nodes as feedback connections, redirection of the 

output to the input is assisted. Here, there is an equal number of inputs, nodes, and outputs, in 

this T-S3RA system, and totally  nodes are made by resources.  

The received input weight value is strong-minded from the separate slice service necessities 

stated in terms of the weight values in the connection as well as the node’s state. The weighted 

summation of the nodes  is: 

 , (16) 

where  denotes the connectivity weight between  and , and  10ft he state 10ft he 

node . To control the training in HopFieldNet, the Storkey learning rule is used for minimizing 

the errors well. The Storkey learning rule is mathematically formulated as:  

,  (17)                   

    .  (18)   

The weight estimated between 𝑖 and 𝑗 is represented by 𝑤𝑖𝑗
𝑒𝑘 in (17) and (18) only after 

learning the  pattern, while  represents the new knowledge pattern. The local field  is: 

 .  (19)                                   

Premeditating the HopFieldNet, the resources are categorized in terms of the slice service 

requirements.  

As seen in Fig. 5, for categorizing the available resource blocks from the slices, the 

HopFieldNet with a single layer is  and the equivalent outputs are
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. The inputs are received from all NS defined as . For 

each separate NS, the output in HopFieldNet is attained. 

The advantage of HopFieldNet is its process for associative memory to store part of the 

information and allocate the rest of the pattern. Recalling the former patterns, using prior 

information of the resource amount is enabled for each NS. The resource is classified into 3 

states. In the suggested T-S3RA, the states of the nodes are estimated as: 

.  (20)                              

For each node, the states  are formulated in a trained matrix, where the three groups, ,

, , are the possible states for the resource. The node 𝑠𝑡𝑖  state is defined as: 

,  (21) 

in which  represents the threshold, , and . No 

node is related to itself as in this network and all nodes need to follow . Thus, the 

node connectivity weights are stated as:             

 (22)  

For each node, the threshold  is presented based on its service requirements. The 

threshold for the nodes is presented in matrix format as: 

 ,   (23)                              

where  represent the separate threshold values for each node. The threshold 

can be varied considering the existence of the slice requests in each NS. The threshold is 

updated when a new slice request is included in the device or user, then. Using the class of the 

resources at the NS is recognized followed by finding the resources for the NS. Then, the 

individual NS payment status is confirmed to exactly predict the use of the load by the NS. 

4.5 Dynamic Flow Offloading 

A higher traffic volume of slices is resultant from an inadequate bandwidth for switches. 

Comprised   is used in terms of the transmission rate, switch service capacity, and loss 

rate. By , multiple flows are mapped to the optimal switches increasing the network 

reputation. Furthermore,  helps to prevent slice capacity problems. 

5. RESULTS AND DISCUSSION 

5.1 Simulation Setup 

To evaluate the proposed T-S3RA model, the network simulator tool V.NS3.26 was used, 

which can incorporate the technologies and network modules needed to simulate a network 

properly. The network simulator was mounted on a system with a 32-bit dual-core processor, 
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the Ubuntu 14.04 LTS OS, and 2 GB of RAM. Table 1 presents the simulation parameters for 

designing the testbed. 

 

Fig. 2 represents the suggested T-S3RA architecture model simulation results. The proposed 

system with various planes is explained based on the simulation steps, as shown above. 

 
 

Fig.2. The Simulation results for key generation, network slicing, and node deployment 

5.2. Comparative analysis 

In this comparative analysis section, the efficiencies of the proposed T-S3RA are evaluated 

based on the methods assessed previously. To compare with the proposed system, some 

significant metrics are taken into account. To illustrate the performance of former resource 

allocation and network slicing schemes, the present approaches concentrate on dynamic flow 

migration (load balancing), resource allocation, or network slicing during network slicing. 

Thus, the present work focusing on all three procedures accompanied by security helps to avoid 

resource wastage in the control planes and data. A comparison was made on the performances 

of T-S3RA for three slices, URLLC, mMTC, and eMBB represented as S1, S2, and S3 

respectively. 

5.2.1. Effect on Throughput 

The throughput performance is demonstrated in Fig. 3 based on the number of slice requests. 

As seen, the network’s throughput possesses greater values in the presented T-S3RA than the 

GRU-DNN [42]. 
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Fig.3. The throughput against the number of slice requests 

5.2.2. Effect on Latency 

Fig. 4 shows the comparison of latency performance. A lower latency was obtained by the 

presented T-S3RA since it utilizes fast algorithms as well as effective resource allocation and 

network slicing. More time is required to calculate the hyperparameters and tuning required for 

the DNN.  

 

Fig.4. The latency against the number of slice requests 

5.2.3. Effects on Response Time 

According to Fig. 5, the response time performance is improved, by minimizing the latency. 

The results of the response time comparison are presented in Fig. 5. A considerably small 

response time was obtained since T-S3RA is effective and end-to-end secure. An effective 

algorithm was not used in the present work.  
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Fig.5. The response time and the number of slice requests 

5.2.4. Effects on Transmission Ratio 

Utilizing the asymmetric queue model, the traffic is arranged at the 5G AP increasing the 

packet transmission ratio. Moreover, for all slice requests, resources are optimally allocated 

resulting in a higher packet transmission ratio. The highest packet transmission ratio was 

obtained for S2 since highly reliable responses are required by these services. 

5.2.5. Effects on Packet Loss Ratio 

To assess the packet loss performance, the number of devices is considered. According to 

Fig.11, the packet loss is lower in the considered T-S3RA than in the GRU-DNN.  

 

Fig.6. The packet loss ratio versus the number of devices 

5.2.6. Effects on Slice Capacity 

The comparison of the slice capacity vs. the number of devices is presented in Fig. 7. Based 

on the analysis of slice capacity, high performance is obtained by the proposed T-S3RA. 
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Fig.7. The slice capacity against the number of devices 

5.2.7. Effects on Bandwidth Consumption 

The bandwidth consumptions of the estimated and present outlines are presented in Fig. 8. 

 

 

Fig.8. The bandwidth consumption versus the number of slices 

Traffic offloading along with a multi-controller environment is used by the presented 

scheme, hence, the lower bandwidth is consumed. However, the higher bandwidth is used for 

GRU-DNN since there are no single controller problems and massive traffic handling. 

5.2.8. Effect on Slice Acceptance Ratio 

The acceptance ratios of the slice of T-S3RA and GRU-DNN are compared in Fig.9. 
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Fig.9. The slice acceptance ratio against the number of slice requests 

 

Using deep learning-based resource allocation and network slicing can result in a 

considerably higher slice acceptance ratio. In the former study, the best solution was not 

obtained using deep learning methods. Therefore, there were poor slice acceptance ratios. 

Particularly, limited parameters were considered by the problem for slice selection.  

Therefore, better efficiency is obtained by the presented T-S3RA compared to the GRU-

DNN for all network slices. Moreover, security is ensured by the presented T-S3RA while 

performing resource allocation and slicing the network.   

6. Conclusion 

In the present work, the QoS was enhanced in an SDN/NFV-permitted 5G network in terms 

of the presented architecture including T-S3RA incorporating the service and SLA necessities 

for requests arriving from a user or device. There are four planes in the presented architecture 

including device, local controller, data, and global controller. The users or devices are 

authenticated through the VA via 5G AP utilizing PBKDF2. For secure communication, the 

VA is made and authenticated to the 5G AP reducing the communication overhead. Then, the 

traffic from the 5G AP is categorized into two HP and LP queues. It is held by the asymmetric 

queue model utilizing Bernoulli’s theorem. Then, the HP request is forwarded to the LC for 

resource allocation and network slicing. SliceNet was proposed in this work for slicing, and 

resources were assigned utilizing HopFieldNet. Furthermore, to run dynamic flow offloading, 

FwBG was used. To prevent packet dropping and enrich the QoS, the flows were matched with 

underloaded switches. Furthermore, DDoS attackers were eliminated from the network through 

packet arrangement utilizing Renyi entropy. Ultimately, the system’s performance was 

assessed in terms of QoS metrics like throughput, latency, response time, packet loss ratio, 

packet transmission ratio, bandwidth consumption, slice capacity, as well as slice acceptance 

ratio. 
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